TenseurEn mathématiques, plus précisément en algèbre multilinéaire et en géométrie différentielle, un tenseur est un objet très général, dont la valeur s'exprime dans un espace vectoriel. On peut l'utiliser entre autres pour représenter des applications multilinéaires ou des multivecteurs.
Deviance information criterionThe deviance information criterion (DIC) is a hierarchical modeling generalization of the Akaike information criterion (AIC). It is particularly useful in Bayesian model selection problems where the posterior distributions of the models have been obtained by Markov chain Monte Carlo (MCMC) simulation. DIC is an asymptotic approximation as the sample size becomes large, like AIC. It is only valid when the posterior distribution is approximately multivariate normal.
Covariance de Lorentzvignette|Illustration de l'espace-temps. En relativité restreinte, une quantité est dite covariante de Lorentz lorsque ses composantes forment une représentation du groupe de Lorentz. Par exemple le temps propre se transforme de façon particulièrement simple puisqu'il est invariant sous transformation de Lorentz, on dit que c'est une quantité scalaire et on parle de scalaire de Lorentz. La représentation associée du groupe de Lorentz est la représentation triviale.
Covariance généraleEn physique théorique, la covariance générale (ou invariance générale) est l'invariance de la forme des lois physiques dans toute transformation de coordonnées différentiable. Le principe qui sous-tend cette notion est qu'il n'existe a priori aucune coordonnée dans la Nature, ce sont seulement des artifices mathématiques utilisés pour la décrire, et qui ne devraient donc jouer aucun rôle dans l'expression des lois fondamentales de la physique.
Vecteur unitairevignette|Deux vecteurs unitaires dans un espace vectoriel normé. Dans un espace vectoriel normé (réel ou complexe) E, un vecteur unitaire est un vecteur dont la norme est égale à 1. Si le corps des scalaires est R, deux vecteurs unitaires v et w sont colinéaires si et seulement si v = w ou v = –w. Si le corps des scalaires est C, et si v est un vecteur unitaire de E, alors les vecteurs unitaires colinéaires à v sont αv où α est un complexe de module 1. Les vecteurs unitaires permettent de définir la direction et le sens d'un vecteur non nul de E.
QuadrivecteurEn physique, un quadrivecteur est un vecteur à quatre dimensions utilisé pour représenter un événement dans l'espace-temps. Dans la théorie de la relativité restreinte, un quadrivecteur est un vecteur de l'espace de Minkowski, où un changement de référentiel se fait par des transformations de Lorentz (par covariance des coordonnées). En relativité restreinte, un quadrivecteur (ou 4-vecteur) est un vecteur appartenant à l'espace vectoriel associé à l'espace affine qu'est l'espace-temps.
Moment magnétique anomalEn physique des particules, le moment magnétique anomal désigne l'écart entre la valeur du facteur de Landé g d'un lepton et la valeur donnée par l'équation de Dirac. Cette anomalie est remarquablement bien expliquée par le modèle standard, en particulier par l'électrodynamique quantique, lorsque l'influence du vide quantique est prise en compte. L'anomalie est une quantité sans dimension, notée et donnée par : . Au moment cinétique orbital d'une particule de charge et de masse est associé un moment magnétique orbital : Le facteur est appelé rapport gyromagnétique.
Principle of covarianceIn physics, the principle of covariance emphasizes the formulation of physical laws using only those physical quantities the measurements of which the observers in different frames of reference could unambiguously correlate. Mathematically, the physical quantities must transform covariantly, that is, under a certain representation of the group of coordinate transformations between admissible frames of reference of the physical theory. This group is referred to as the covariance group.
Prédiction dynamiqueLa prédiction dynamique est une méthode inventée par Newton et Leibniz. Newton l’a appliquée avec succès au mouvement des planètes et de leurs satellites. Depuis elle est devenue la grande méthode de prédiction des mathématiques appliquées. Sa portée est universelle. Tout ce qui est matériel, tout ce qui est en mouvement, peut être étudié avec les outils de la théorie des systèmes dynamiques. Mais il ne faut pas en conclure que pour connaître un système il est nécessaire de connaître sa dynamique.
Interpolation bicubiquevignette|Illustration de l'interpolation bicubique sur un ensemble de données aléatoires En mathématiques, l'interpolation bicubique est une extension de l'interpolation cubique pour interpoler un ensemble de points distribués sur une grille régulière bidimensionnelle. La surface interpolée est plus lisse que les surfaces correspondantes obtenues par interpolation bilinéaire ou par sélection du plus proche voisin. L'interpolation bicubique peut être accomplie en utilisant soit des polynômes de Lagrange, soit des splines cubiques, soit un algorithme de convolution cubique.