Stepwise regressionIn statistics, stepwise regression is a method of fitting regression models in which the choice of predictive variables is carried out by an automatic procedure. In each step, a variable is considered for addition to or subtraction from the set of explanatory variables based on some prespecified criterion. Usually, this takes the form of a forward, backward, or combined sequence of F-tests or t-tests.
Tolerance intervalA tolerance interval (TI) is a statistical interval within which, with some confidence level, a specified sampled proportion of a population falls. "More specifically, a 100×p%/100×(1−α) tolerance interval provides limits within which at least a certain proportion (p) of the population falls with a given level of confidence (1−α)." "A (p, 1−α) tolerance interval (TI) based on a sample is constructed so that it would include at least a proportion p of the sampled population with confidence 1−α; such a TI is usually referred to as p-content − (1−α) coverage TI.
Resampling (statistics)In statistics, resampling is the creation of new samples based on one observed sample. Resampling methods are: Permutation tests (also re-randomization tests) Bootstrapping Cross validation Permutation test Permutation tests rely on resampling the original data assuming the null hypothesis. Based on the resampled data it can be concluded how likely the original data is to occur under the null hypothesis.
Vecteur contravariant, covariant et covecteurUn vecteur contravariant est un vecteur, un vecteur covariant est une forme linéaire, encore appelé covecteur, ou encore vecteur dual. Et si on dispose d'un produit scalaire, on peut représenter une forme linéaire (= un vecteur covariant = un covecteur) par un vecteur à l'aide du théorème de représentation de Riesz (cette représentation dépend du choix du produit scalaire).
Coverage probabilityIn statistics, the coverage probability, or coverage for short, is the probability that a confidence interval or confidence region will include the true value (parameter) of interest. It can be defined as the proportion of instances where the interval surrounds the true value as assessed by long-run frequency. The fixed degree of certainty pre-specified by the analyst, referred to as the confidence level or confidence coefficient of the constructed interval, is effectively the nominal coverage probability of the procedure for constructing confidence intervals.
Mixed tensorIn tensor analysis, a mixed tensor is a tensor which is neither strictly covariant nor strictly contravariant; at least one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a superscript (contravariant). A mixed tensor of type or valence , also written "type (M, N)", with both M > 0 and N > 0, is a tensor which has M contravariant indices and N covariant indices. Such a tensor can be defined as a linear function which maps an (M + N)-tuple of M one-forms and N vectors to a scalar.
L-momentIn statistics, L-moments are a sequence of statistics used to summarize the shape of a probability distribution. They are linear combinations of order statistics (L-statistics) analogous to conventional moments, and can be used to calculate quantities analogous to standard deviation, skewness and kurtosis, termed the L-scale, L-skewness and L-kurtosis respectively (the L-mean is identical to the conventional mean). Standardised L-moments are called L-moment ratios and are analogous to standardized moments.
Vecteur euclidienEn mathématiques, et plus précisément en géométrie euclidienne, un vecteur euclidien est un objet géométrique possédant une direction, un sens et une norme. On l'utilise par exemple en physique et en ingénierie pour modéliser une force. On parle aussi parfois de vecteur géométrique dans le plan euclidien (deux dimensions) et de vecteur spatial dans l'espace à trois dimensions. Vecteur#HistoireVecteur En physique et en ingénierie, on travaille souvent dans l'espace euclidien.
Méthode des moments (statistiques)La méthode des moments est un outil d'estimation intuitif qui date du début des statistiques. Elle consiste à estimer les paramètres recherchés en égalisant certains moments théoriques (qui dépendent de ces paramètres) avec leurs contreparties empiriques. L'égalisation se justifie par la loi des grands nombres qui implique que l'on peut "approcher" une espérance mathématique par une moyenne empirique. On est donc amené à résoudre un système d'équations. On suppose que l'échantillon X1,...
Vecteur positionEn géométrie, le vecteur position, ou rayon vecteur, est le vecteur qui sert à indiquer la position d'un point par rapport à un repère. L'origine du vecteur se situe à l'origine fixe du repère et son autre extrémité à la position du point. Si l'on note M cette position et O l'origine, le vecteur position se note . On le note aussi ou . En physique, le vecteur déplacement d'un point matériel ou d'un objet est le vecteur reliant une ancienne position à une nouvelle, donc le vecteur position final moins le vecteur position initial.