Trigonometric interpolationIn mathematics, trigonometric interpolation is interpolation with trigonometric polynomials. Interpolation is the process of finding a function which goes through some given data points. For trigonometric interpolation, this function has to be a trigonometric polynomial, that is, a sum of sines and cosines of given periods. This form is especially suited for interpolation of periodic functions. An important special case is when the given data points are equally spaced, in which case the solution is given by the discrete Fourier transform.
Intégrale de GaussEn mathématiques, une intégrale de Gauss est l'intégrale d'une fonction gaussienne sur l'ensemble des réels. Sa valeur est reliée à la constante π par la formule où α est un paramètre réel strictement positif. Elle intervient dans la définition de la loi de probabilité appelée loi gaussienne, ou loi normale. Cette formule peut être obtenue grâce à une intégrale double et un changement de variable polaire. Sa première démonstration connue est donnée par Pierre-Simon de Laplace.
Intégrale non élémentaireEn mathématiques, une intégrale non élémentaire est une intégrale qui n'a aucune formule en termes de fonctions élémentaires. L'existence de telles fonctions a été démontrée par Joseph Liouville en 1835. Parmi les intégrales non élémentaires, on peut citer où R est une fonction rationnelle à deux variables, P est une fonction polynomiale de degré 3 ou 4 avec des racines simples, qui donnent les intégrales elliptiques ; qui donne le logarithme intégral ; à l'origine de la loi normale. Théorème de Liouvill
Logarithme intégralEn mathématiques, le logarithme intégral li est une fonction spéciale définie en tout nombre réel strictement positif x ≠ 1 par l'intégrale : où ln désigne le logarithme népérien. La fonction n'est pas définie en t = 1, et l'intégrale pour x > 1 doit être interprétée comme la valeur principale de Cauchy : Quand x tend vers +∞, on a l'équivalence c'est-à-dire que D'après le théorème des nombres premiers, la fonction de compte des nombres premiers π(x) est équivalente à x/ln(x), donc à li(x), qui en fournit par ailleurs une meilleure approximation.
Fonction (mathématiques)vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
Théorie de l'approximationEn mathématiques, la théorie de l'approximation concerne la façon dont les fonctions peuvent être approchées par de plus simples fonctions, en donnant une caractérisation quantitative des erreurs introduites par ces approximations. Le problème de l'approximation s'est posé très tôt en géométrie, pour les fonctions trigonométriques : ce sont des fonctions dont on connaît les propriétés (parité, dérivabilité, valeurs en des points particuliers) mais qui ne s'expriment pas à partir d'opérations réalisables à la main (les quatre opérations).
Approximation affineEn mathématiques, une approximation affine est une approximation d'une fonction au voisinage d'un point à l'aide d'une fonction affine. Une approximation affine sert principalement à simplifier un problème dont on peut obtenir une solution approchée. Deux façons classiques d'obtenir une approximation affine de fonction passent par l'interpolation ou le développement limité à l’ordre 1.
AsymptoteLe terme d'asymptote (prononciation : ) est utilisé en mathématiques pour préciser des propriétés éventuelles d'une branche infinie de courbe à accroissement tendant vers l'infinitésimal. C'est d'abord un adjectif d'étymologie grecque qui peut qualifier une droite, un cercle, un point... dont une courbe plus complexe peut se rapprocher. C'est aussi devenu un nom féminin synonyme de droite asymptote. Une droite asymptote à une courbe est une droite telle que, lorsque l'abscisse ou l'ordonnée tend vers l'infini, la distance de la courbe à la droite tend vers 0.
ArgumentationL’argumentation est l'action de convaincre et pousser ainsi l'autre à agir. Contrairement à la persuasion, elle vise à être comprise de tous et résiste à l'utilisation d'arguments fallacieux. L’argument est, en logique et en linguistique, l’ensemble des prémisses données en support à une conclusion. Une argumentation est composée d'une conclusion et d'un ou de plusieurs « éléments de preuve », que l'on appelle des prémisses ou des arguments, et qui constituent des raisons d'accepter cette conclusion.
Argument mapAn argument map or argument diagram is a visual representation of the structure of an argument. An argument map typically includes all the key components of the argument, traditionally called the conclusion and the premises, also called contention and reasons. Argument maps can also show co-premises, objections, counterarguments, rebuttals, and lemmas. There are different styles of argument map but they are often functionally equivalent and represent an argument's individual claims and the relationships between them.