Robotic sensingRobotic sensing is a subarea of robotics science intended to provide sensing capabilities to robots. Robotic sensing provides robots with the ability to sense their environments and is typically used as feedback to enable robots to adjust their behavior based on sensed input. Robot sensing includes the ability to see, touch, hear and move and associated algorithms to process and make use of environmental feedback and sensory data.
Chargeur (électricité)thumb|Chargeurs et différents types et format de batteries. Un chargeur est un appareil permettant de recharger un ou plusieurs accumulateurs électriques, groupés ou non en batterie, en injectant un courant électrique inverse au sens d'utilisation (décharge). Le circuit le plus simple est une source électrique continue et stabilisée en tension, limitée en courant ou l'inverse. thumb|upright=1.2|Chargeur simple de type mural (sortie : / ). thumb|Chargeur pour piles rechargeables en lithium 1.5V, et son câble USB-C.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Developmental roboticsDevelopmental robotics (DevRob), sometimes called epigenetic robotics, is a scientific field which aims at studying the developmental mechanisms, architectures and constraints that allow lifelong and open-ended learning of new skills and new knowledge in embodied machines. As in human children, learning is expected to be cumulative and of progressively increasing complexity, and to result from self-exploration of the world in combination with social interaction.
Robotique molleLa robotique molle () est un domaine de la robotique. Ce domaine traite des « robots mous » incluant certains types de drones, et construits en matériaux ou structures souples, élastiques ou déformables tels que le silicone, le plastique, le caoutchouc et autres polymères, les tissus, etc., ou des pièces mécaniques déformables utilisées en robotique, par exemple les ressorts, les élastiques ou les absorbeurs de chocs ou de vibrations.
Cognitive roboticsCognitive Robotics or Cognitive Technology is a subfield of robotics concerned with endowing a robot with intelligent behavior by providing it with a processing architecture that will allow it to learn and reason about how to behave in response to complex goals in a complex world. Cognitive robotics may be considered the engineering branch of embodied cognitive science and embodied embedded cognition, consisting of Robotic Process Automation, Artificial Intelligence, Machine Learning, Deep Learning, Optical Character Recognition, , Process Mining, Analytics, Software Development and System Integration.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Réseau de neurones de HopfieldLe réseau de neurones d'Hopfield est un modèle de réseau de neurones récurrents à temps discret dont la matrice des connexions est symétrique et nulle sur la diagonale et où la dynamique est asynchrone (un seul neurone est mis à jour à chaque unité de temps). Il a été popularisé par le physicien John Hopfield en 1982. Sa découverte a permis de relancer l'intérêt dans les réseaux de neurones qui s'était essoufflé durant les années 1970 à la suite d'un article de Marvin Minsky et Seymour Papert.
Énergie renouvelableLes énergies renouvelables (parfois abrégées EnR) proviennent de sources d'énergie dont le renouvellement naturel est assez rapide pour qu'elles puissent être considérées comme inépuisables à l'échelle du temps humain. Elles proviennent de phénomènes naturels cycliques ou constants induits par les astres : le Soleil essentiellement pour la chaleur et la lumière qu'il produit, mais aussi l'attraction de la Lune (marées) et la chaleur engendrée par la Terre (géothermie).