Quantification existentielleEn mathématiques et en logique, plus précisément en calcul des prédicats, l'existence d'un objet x satisfaisant une certaine propriété, ou prédicat, P se note ∃x P(x), où le symbole mathématique ∃, lu « il existe », est le quantificateur existentiel, et P(x) le fait pour l'objet x d'avoir la propriété P. L'objet x a la propriété P(x) s'exprime par une formule du calcul des prédicats.
Universal quantificationIn mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", or "for any". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.
Quantification (logique)vignette|Symboles mathématiques des deux quantificateurs logiques les plus courants.|236px En mathématiques, les expressions « pour tout » (ou « quel que soit ») et « il existe », utilisées pour formuler des propositions mathématiques dans le calcul des prédicats, sont appelées des quantifications. Les symboles qui les représentent en langage formel sont appelés des quantificateurs (ou autrefois des quanteurs). La quantification universelle (« pour tout ... » ou « quel que soit ... ») se dénote par le symbole ∀ (un A à l'envers).
Unicité (mathématiques)En mathématiques, l'unicité d'un objet satisfaisant certaines propriétés est le fait que tout objet satisfaisant les mêmes propriétés lui est égal. Autrement dit, il ne peut exister deux objets différents satisfaisant ces mêmes propriétés. Cependant, une démonstration de l'unicité ne suffit pas a priori pour en déduire l'existence de l'objet. La conjonction de l'existence et de l'unicité est usuellement notée à l'aide du quantificateur « ∃! ».
Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Branching quantifierIn logic a branching quantifier, also called a Henkin quantifier, finite partially ordered quantifier or even nonlinear quantifier, is a partial ordering of quantifiers for Q ∈ {∀,∃}. It is a special case of generalized quantifier. In classical logic, quantifier prefixes are linearly ordered such that the value of a variable ym bound by a quantifier Qm depends on the value of the variables y1, ..., ym−1 bound by quantifiers Qy1, ..., Qym−1 preceding Qm. In a logic with (finite) partially ordered quantification this is not in general the case.
Algèbre de type finiEn algèbre commutative, la notion d'algèbre de type fini est une première généralisation des anneaux de polynômes à un nombre fini d'indéterminées. Ces algèbres possèdent de bonnes propriétés relatives à l'anneau de base, et de bonnes propriétés absolues lorsque l'anneau de base est un corps. Les algèbres de type fini sur un corps sont les objets algébriques de base des variétés algébriques. Sur un corps k, attention à ne pas confondre une algèbre de type fini avec une extension de type fini qui n'est jamais de type fini en tant que k-algèbre sauf si c'est une extension finie.
Groupe abélien de type finiEn mathématiques, un groupe abélien de type fini est un groupe abélien qui possède une partie génératrice finie. Autrement dit : c'est un module de type fini sur l'anneau Z des entiers relatifs. Par conséquent, les produits finis, les quotients, mais aussi les sous-groupes des groupes abéliens de type fini sont eux-mêmes de type fini. Un théorème de structure des groupes abéliens de type fini permet d'expliciter la liste complète de ces groupes à isomorphisme près ; il montre notamment que tout groupe abélien de type fini est un produit fini de groupes monogènes.
Calcul des prédicatsEn logique mathématique, le calcul des prédicats du premier ordre, ou calcul des relations, logique quantificationnelle, ou tout simplement calcul des prédicats, est un système formel utilisé pour raisonner et décrire des énoncés en mathématiques, informatique, intelligence artificielle, philosophie et linguistique. Il a été proposé par Gottlob Frege une formalisation du langage des mathématiques entre la fin du et le début du .
Lambda-calculLe lambda-calcul (ou λ-calcul) est un système formel inventé par Alonzo Church dans les années 1930, qui fonde les concepts de fonction et d'application. On y manipule des expressions appelées λ-expressions, où la lettre grecque λ est utilisée pour lier une variable. Par exemple, si M est une λ-expression, λx.M est aussi une λ-expression et représente la fonction qui à x associe M. Le λ-calcul a été le premier formalisme pour définir et caractériser les fonctions récursives : il a donc une grande importance dans la théorie de la calculabilité, à l'égal des machines de Turing et du modèle de Herbrand-Gödel.