Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Problème de l'arbre de SteinerEn algorithmique, le problème de l'arbre de Steiner est un problème d'optimisation combinatoire. Il porte le nom du mathématicien Jakob Steiner. Ce problème est proche du problème de l'arbre couvrant minimal et a des applications en conception de réseaux, notamment les circuits électroniques et les télécommunications. Il existe plusieurs variantes du problème. Dans un espace métrique, étant donné un ensemble de points P, un arbre pour P est un réseau (c'est-à-dire un ensemble de chemins connectés) tel que tous les points soient reliés, et un arbre est dit de Steiner si la longueur totale du réseau est minimale.
Échantillonnage de GibbsL' est une méthode MCMC. Étant donné une distribution de probabilité sur un univers , cet algorithme définit une chaîne de Markov dont la distribution stationnaire est . Il permet ainsi de tirer aléatoirement un élément de selon la loi (on parle d'échantillonnage). Comme pour toutes les méthodes de Monte-Carlo à chaîne de Markov, on se place dans un espace vectoriel Ɛ de dimension finie n ; on veut générer aléatoirement N vecteurs x(i) suivant une distribution de probabilité π ; pour simplifier le problème, on détermine une distribution qx(i) permettant de générer aléatoirement x(i + 1) à partir de x(i).
Bitonic tourIn computational geometry, a bitonic tour of a set of point sites in the Euclidean plane is a closed polygonal chain that has each site as one of its vertices, such that any vertical line crosses the chain at most twice. The optimal bitonic tour is a bitonic tour of minimum total length. It is a standard exercise in dynamic programming to devise a polynomial time algorithm that constructs the optimal bitonic tour. Although the usual method for solving it in this way takes time , a faster algorithm with time is known.
Étude de casL’étude de cas est une méthode utilisée dans les études qualitatives en sciences humaines et sociales, en psychologie ou en psychanalyse, mais elle peut être utilisée dans les études pour se pencher sur un cas en particulier. Elle vise l'étude approfondie d'un cas spécifié, qu'il soit une personne, un groupe ou un sujet spécifique. Elle peut être considérée à juste titre comme l’une des plus stimulantes d’entre elles tant par ce qu’elle comporte d’exigences pour le chercheur, que par les défis théoriques et méthodologiques qu’elle pose et enfin, par les connaissances du social qu’elle permet d’élaborer.
Formule de Stirlingvignette La formule de Stirling, du nom du mathématicien écossais James Stirling, donne un équivalent de la factorielle d'un entier naturel n quand n tend vers l'infini : que l'on trouve souvent écrite ainsi : où le nombre e désigne la base de l'exponentielle. C'est Abraham de Moivre qui a initialement démontré la formule suivante : où C est une constante réelle (non nulle). L'apport de Stirling fut d'attribuer la valeur C = à la constante et de donner un développement de ln(n!) à tout ordre.
Problème de plus court cheminvignette|Exemple d'un plus court chemin du sommet A au sommet F : (A, C, E, D, F). En théorie des graphes, le 'problème de plus court chemin' est le problème algorithmique qui consiste à trouver un chemin d'un sommet à un autre de façon que la somme des poids des arcs de ce chemin soit minimale. Il existe de nombreuses variantes de ce problème suivant que le graphe est fini, orienté ou non, que chaque arc ou arête possède ou non une valeur qui peut être un poids ou une longueur.
Dirichlet-multinomial distributionIn probability theory and statistics, the Dirichlet-multinomial distribution is a family of discrete multivariate probability distributions on a finite support of non-negative integers. It is also called the Dirichlet compound multinomial distribution (DCM) or multivariate Pólya distribution (after George Pólya). It is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter vector , and an observation drawn from a multinomial distribution with probability vector p and number of trials n.
Méthodes quantitativesLes méthodes quantitatives sont des méthodes de recherche, utilisant des outils d'analyse mathématiques et statistiques, en vue de décrire, d'expliquer et prédire des phénomènes par le biais de données historiques sous forme de variables mesurables. Elles se distinguent ainsi des méthodes dites qualitatives. Le comptage et la mesure sont des méthodes quantitatives banales. Le résultat de la recherche est un nombre ou un ensemble de nombres. On les présente souvent sous forme de tables, de graphiques...