Algorithme probabilisteEn algorithmique, un algorithme probabiliste, ou algorithme randomisé, est un algorithme qui utilise une source de hasard. Plus précisément le déroulement de l’algorithme fait appel à des données tirées au hasard. Par exemple à un certain point de l’exécution, on tire un bit 0 ou 1, selon la loi uniforme et si le résultat est 0, on fait une certaine action A et si c'est 1, on fait une autre action. On peut aussi tirer un nombre réel dans l'intervalle [0,1] ou un entier dans un intervalle [i..j].
Algorithme de triUn algorithme de tri est, en informatique ou en mathématiques, un algorithme qui permet d'organiser une collection d'objets selon une relation d'ordre déterminée. Les objets à trier sont des éléments d'un ensemble muni d'un ordre total. Il est par exemple fréquent de trier des entiers selon la relation d'ordre usuelle « est inférieur ou égal à ». Les algorithmes de tri sont utilisés dans de très nombreuses situations. Ils sont en particulier utiles à de nombreux algorithmes plus complexes dont certains algorithmes de recherche, comme la recherche dichotomique.
Théorème de Carathéodory (géométrie)vignette|Par exemple le point (1/4, 1/4) de l'enveloppe convexe des points (0, 0), (1, 0), (1, 1), (0, 1) se trouve dans l'intérieur du triangle (0, 0), (1, 0), (0, 1). Le théorème de Carathéodory est un théorème de géométrie relatif aux enveloppes convexes dans le contexte des espaces affines de dimension finie. Dans le plan, il affirme que tout point dans l'enveloppe convexe d'un ensemble de points est dans l'intérieur d'un triangle dont les sommets sont dans (l'enveloppe convexe d'un ensemble de points est l'ensemble des barycentres de trois points de ).
Calcul de l'enveloppe convexeEn algorithmique géométrique, le calcul de l'enveloppe convexe est un problème algorithmique. Il consiste, étant donné un ensemble de points, à calculer leur enveloppe convexe. L'enveloppe convexe d'un ensemble de points est le plus petit ensemble convexe qui les contient tous. C'est un polyèdre dont les sommets sont des points de l'ensemble. Le calcul de l'enveloppe convexe consiste à calculer une représentation compacte de l'enveloppe, le plus souvent les sommets de celle-ci.
Corps ordonnéEn algèbre générale, un corps ordonné est la donnée d'un corps commutatif (K, +, ×), muni d'une relation d'ordre (notée ≤ dans l'article) compatible avec la structure de corps. Dans tout l'article, on note naturellement ≥ la relation d'ordre réciproque de ≤, et l'on note < et > les relations d'ordre strict respectivement associées à ≤ et ≥. On note par ailleurs 0 l'élément neutre de l'addition et 1 celui de la multiplication. On note le plus souvent xy le produit de deux éléments x et y de K.
Filtre (mathématiques)En mathématiques, et plus particulièrement en topologie générale, un filtre est une structure définie sur un ensemble, et permettant d'étendre la notion de limite aux situations les plus générales. La théorie des filtres a été inventée, en 1937, par Henri Cartan et utilisée par Bourbaki. Les filtres ont permis en particulier une démonstration élégante du théorème de Tychonov.
Archimedean ordered vector spaceIn mathematics, specifically in order theory, a binary relation on a vector space over the real or complex numbers is called Archimedean if for all whenever there exists some such that for all positive integers then necessarily An Archimedean (pre)ordered vector space is a (pre)ordered vector space whose order is Archimedean. A preordered vector space is called almost Archimedean if for all whenever there exists a such that for all positive integers then A preordered vector space with an order unit is Archimedean preordered if and only if for all non-negative integers implies Let be an ordered vector space over the reals that is finite-dimensional.