FacettageEn géométrie, le facettage est le procédé d'enlèvement de parties d'un polygone, d'un polyèdre ou d'un polytope, sans créer de nouveaux sommets. Le facettage est la réciproque ou le procédé dual de la stellation. Pour chaque stellation d'un certain polytope convexe, il existe un facettage dual d'un polytope dual. Le facettage n'a pas été étudié aussi intensément que la stellation. En 1858, Bertrand obtient les polyèdres étoilés (les solides de Kepler-Poinsot) en facettant l'icosaèdre et le dodécaèdre réguliers et convexes.
Graphe hypohamiltonienEn théorie des graphes, un graphe est hypohamiltonien s'il n'a pas de cycle hamiltonien mais que la suppression de n'importe quel sommet du graphe suffit à le rendre hamiltonien. Les graphes hypohamiltoniens furent étudiés pour la première fois par Sousselier en 1963 dans Problèmes plaisants et délectables. Sous forme d'une petite énigme la notion est introduite. L'énoncé demande de trouver un tel graphe d'ordre 10 (le graphe de Petersen) et de prouver que cet ordre est minimal, c'est-à-dire qu'il n'existe pas de graphe hypohamiltonien à moins de 10 sommets.
Polyhedral combinatoricsPolyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas. Mathematicians in this area study the combinatorics of polytopes; for instance, they seek inequalities that describe the relations between the numbers of vertices, edges, and faces of higher dimensions in arbitrary polytopes or in certain important subclasses of polytopes, and study other combinatorial properties of polytopes such as their connectivity and diameter (number of steps needed to reach any vertex from any other vertex).
Tutte embeddingIn graph drawing and geometric graph theory, a Tutte embedding or barycentric embedding of a simple, 3-vertex-connected, planar graph is a crossing-free straight-line embedding with the properties that the outer face is a convex polygon and that each interior vertex is at the average (or barycenter) of its neighbors' positions. If the outer polygon is fixed, this condition on the interior vertices determines their position uniquely as the solution to a system of linear equations.
Quadruplet premierEn théorie des nombres, un quadruplet premier est une suite de quatre nombres premiers consécutifs de la forme (p, p+2, p+6, p+8). C'est la seule forme possible pour quatre nombres premiers consécutifs d'écarts entre eux minimaux, en dehors des quadruplets (2,3,5,7) et (3,5,7,11). Par exemple (5, 7, 11, 13) et (11, 13, 17, 19) sont des quadruplets premiers. Un quadruplet de nombres premiers impairs consécutifs a un écart entre le plus petit et le plus grand de ces nombres d'au moins 6, il ne peut être de 6 car le seul triplet de nombres premiers consécutifs de la forme (p, p+2, p+4) est (3, 5, 7) (voir triplet premier).
Coefficient binomial de GaussEn mathématiques, les coefficients binomiaux de Gauss ou coefficients q-binomiaux ou encore q-polynômes de Gauss sont des q -analogues des coefficients binomiaux, introduits par C. F. Gauss en 1808 . Le coefficient q-binomial, écrit ou , est un polynôme en à coefficients entiers, qui donne, lorsque est une puissance de nombre premier, le nombre de sous-espaces vectoriels de dimension d'un espace vectoriel de dimension sur un corps fini à éléments.
Quaternions de HurwitzLes quaternions de Hurwitz portent ce nom en l'honneur du mathématicien allemand Adolf Hurwitz. Soit A un anneau. On definit l'algèbre de quaternions H(A) comme l'algèbre A[H] du groupe H des quaternions. Plus explicitement, c'est le A-module libre engendré par 1, i, j et k, muni de la structure d'algèbre : 1 élément neutre pour la multiplication, et les identités : Soit , l'algèbre des quaternions sur l'anneau Z des entiers relatifs.