VoltampérométrieLa voltampérométrie (ou voltammétrie) est une méthode d’électroanalyse basée sur la mesure du flux de courant résultant de la réduction ou de l’oxydation des composés tests présents en solution sous l’effet d’une variation contrôlée de la différence de potentiel entre deux électrodes spécifiques. Elle permet d’identifier et de mesurer quantitativement un grand nombre de composés (cations, certains anions, composés organiques), dont certains simultanément, et également d’étudier les réactions chimiques incluant ces composés.
Oxygen evolutionOxygen evolution is the process of generating molecular oxygen (O2) by a chemical reaction, usually from water. Oxygen evolution from water is effected by oxygenic photosynthesis, electrolysis of water, and thermal decomposition of various oxides. The biological process supports aerobic life. When relatively pure oxygen is required industrially, it is isolated by distilling liquefied air. Oxygen evolving complex Photosynthetic oxygen evolution is the fundamental process by which oxygen is generated in the earth's biosphere.
ÉlectrolyseL'électrolyse est une méthode qui permet de réaliser des réactions chimiques grâce à une activation électrique. C'est le processus de conversion de l'énergie électrique en énergie chimique. Elle permet par ailleurs, dans l'industrie chimique, la séparation d'éléments ou la synthèse de composés chimiques. Elle intervient aussi dans la classification des corps purs. L'électrolyse est utilisée dans divers procédés industriels, tels que la production de dihydrogène par électrolyse de l'eau, la production d'aluminium ou de chlore, ou encore pour le placage d'objets par galvanoplastie.
Voltampérométrie cycliqueLa voltampérométrie cyclique (ou voltammétrie cyclique) est une technique électrochimique dans laquelle on enregistre la réponse en courant résultant d'une variation continue du potentiel de l'électrode de travail sur laquelle se produit la réaction électrochimique étudiée. On parle de voltampérométrie cyclique parce que le potentiel est varié, à vitesse constante, de façon répétée entre deux bornes, appelées "potentiels d'inversion". On appelle "cycle", un aller-retour entre les deux bornes.
Reaction rateThe reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. Reaction rates can vary dramatically. For example, the oxidative rusting of iron under Earth's atmosphere is a slow reaction that can take many years, but the combustion of cellulose in a fire is a reaction that takes place in fractions of a second.
Linear sweep voltammetryIn analytical chemistry, linear sweep voltammetry is a method of voltammetry where the current at a working electrode is measured while the potential between the working electrode and a reference electrode is swept linearly in time. Oxidation or reduction of species is registered as a peak or trough in the current signal at the potential at which the species begins to be oxidized or reduced. The experimental setup for linear sweep voltammetry utilizes a potentiostat and a three-electrode setup to deliver a potential to a solution and monitor its change in current.
Hydrodynamic voltammetryIn analytical chemistry, hydrodynamic voltammetry is a form of voltammetry in which the analyte solution flows relative to a working electrode. In many voltammetry techniques, the solution is intentionally left still to allow diffusion-controlled mass transfer. When a solution is made to flow, through stirring or some other physical mechanism, it is very important to the technique to achieve a very controlled flux or mass transfer in order to obtain predictable results.
Rate equationIn chemistry, the rate law or rate equation for a chemical reaction is a mathematical equation that links the rate of forward reaction with the concentrations or pressures of the reactants and constant parameters (normally rate coefficients and partial reaction orders). For many reactions, the initial rate is given by a power law such as where [\mathrm{A}] and [\mathrm{B}] express the concentration of the species \mathrm{A} and \mathrm{B}, usually in moles per liter (molarity, M).
ChloreLe chlore est l'élément chimique de numéro atomique 17, de symbole Cl. C'est le plus commun des halogènes. Le chlore est abondant dans la nature, son dérivé le plus important est le sel de table ou chlorure de sodium (NaCl). Ce dernier est nécessaire à de nombreuses formes de vie. Le chlore, à l'état de corps simple, se présente sous la forme de la molécule de dichlore Cl2, qui est un gaz jaune-vert 2,5 fois plus dense que l'air, aux conditions normales de température et de pression.
OxygèneL'oxygène est l'élément chimique de numéro atomique 8, de symbole O. C'est la tête de file du groupe des chalcogènes, souvent appelé groupe de l'oxygène. Découvert indépendamment en 1772 par le Suédois Carl Wilhelm Scheele à Uppsala, et en 1774 par Pierre Bayen à Châlons-en-Champagne ainsi que par le Britannique Joseph Priestley dans le Wiltshire, l'oxygène a été nommé ainsi en 1777 par le Français Antoine Lavoisier du grec ancien (« aigu », c'est-à-dire ici « acide »), et (« générateur »), car Lavoisier pensait à tort que : Une molécule de formule chimique , appelée communément « oxygène » mais « dioxygène » par les chimistes, est constituée de deux atomes d'oxygène reliés par liaison covalente : aux conditions normales de température et de pression, le dioxygène est un gaz, qui constitue 20,8 % du volume de l'atmosphère terrestre au niveau de la mer.