Spin–lattice relaxationDuring nuclear magnetic resonance observations, spin–lattice relaxation is the mechanism by which the longitudinal component of the total nuclear magnetic moment vector (parallel to the constant magnetic field) exponentially relaxes from a higher energy, non-equilibrium state to thermodynamic equilibrium with its surroundings (the "lattice"). It is characterized by the spin–lattice relaxation time, a time constant known as T1.
Spectroscopie RMN en deux dimensionsLa spectroscopie RMN en deux dimensions ou spectroscopie RMN bidimensionnelle ou encore RMN-2D est un ensemble de dispositifs de reconnaissance de relations de proximité, dans l'espace ou à travers les liaisons, entre plusieurs noyaux actifs en RMN. Il s'agit de RMN de corrélation. Dans une expérience de spectroscopie RMN bidimensionnelle, le résultat est un spectre en trois dimensions : le déplacement chimique pour le noyau 1 (δ1), le déplacement chimique pour le noyau 2 (δ2) et l'intensité du signal.
Spectroscopie RMNvignette|redresse|Spectromètre RMN avec passeur automatique d'échantillons utilisé en chimie organique pour la détermination des structures chimiques. vignette|redresse|Animation présentant le principe de la Résonance Magnétique Nucléaire (RMN). La spectroscopie RMN est une technique qui exploite les propriétés magnétiques de certains noyaux atomiques. Elle est basée sur le phénomène de résonance magnétique nucléaire (RMN), utilisé également en sous le nom d’.
Spin–spin relaxationIn physics, the spin–spin relaxation is the mechanism by which Mxy, the transverse component of the magnetization vector, exponentially decays towards its equilibrium value in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). It is characterized by the spin–spin relaxation time, known as T2, a time constant characterizing the signal decay. It is named in contrast to T1, the spin–lattice relaxation time.
Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
Effet Overhauser nucléaireEn spectroscopie RMN, l'effet Overhauser nucléaire décrit une interaction entre deux spins à travers l'espace et non pas à travers les liaisons chimiques comme le couplage scalaire. Cette interaction est limitée à environ 5-6 Å. En anglais, cet effet s'appelle "Nuclear Overhauser Effect", soit NOE. Cet acronyme est souvent utilisé en français sous l'expression "effet NOE". Une des conséquences de la résonance magnétique nucléaire est l'interaction dipôle-dipôle à travers l'espace.
Résonance paramagnétique électroniquevignette|redresse=1.25|Spectromètre à résonance paramagnétique électronique La résonance paramagnétique électronique (RPE), résonance de spin électronique (RSE), ou en anglais electron spin resonance (ESR) désigne la propriété de certains électrons à absorber, puis réémettre l'énergie d'un rayonnement électromagnétique lorsqu'ils sont placés dans un champ magnétique. Seuls les électrons non appariés (ou électrons célibataires), présents dans des espèces chimiques radicalaires ainsi que dans les sels et complexes des métaux de transition, présentent cette propriété.
Référentiel galiléenEn physique, un référentiel galiléen (nommé ainsi en hommage à Galilée), ou inertiel, se définit comme un référentiel dans lequel le principe d'inertie (première loi de Newton) est vérifié, c'est-à-dire que tout corps ponctuel libre (i. e. sur lequel ne s’exerce aucune force ou sur lequel la résultante des forces est nulle) est en mouvement de translation rectiligne uniforme, ou au repos (qui est un cas particulier de mouvement rectiligne uniforme). Par suite, la vitesse du corps est constante (au cours du temps) en direction et en norme.
Spectroscopie infrarougethumb|Un spectromètre infrarouge. La spectroscopie infrarouge (parfois désignée comme spectroscopie IR) est une classe de spectroscopie qui traite de la région infrarouge du spectre électromagnétique. Elle recouvre une large gamme de techniques, la plus commune étant un type de spectroscopie d'absorption. Comme pour toutes les techniques de spectroscopie, elle peut être employée pour l'identification de composés ou pour déterminer la composition d'un échantillon.
Référentiel en rotationUn référentiel en rotation est un cas particulier de référentiel non inertiel qui est en rotation par rapport à un référentiel inertiel. Un exemple courant d'un système de référence en rotation est la surface de la Terre. Ce référentiel permet de mesurer la vitesse et le sens de rotation en mesurant les forces fictives. Par exemple, Léon Foucault a pu démontrer la force de Coriolis résultant de la rotation de la Terre avec le pendule de Foucault. Cette animation montre le système de référence en rotation.