En physique, un référentiel galiléen (nommé ainsi en hommage à Galilée), ou inertiel, se définit comme un référentiel dans lequel le principe d'inertie (première loi de Newton) est vérifié, c'est-à-dire que tout corps ponctuel libre (i. e. sur lequel ne s’exerce aucune force ou sur lequel la résultante des forces est nulle) est en mouvement de translation rectiligne uniforme, ou au repos (qui est un cas particulier de mouvement rectiligne uniforme). Par suite, la vitesse du corps est constante (au cours du temps) en direction et en norme. Une définition, plus abstraite, mais équivalente, est celle d'un référentiel par rapport auquel le temps est uniforme, l'espace homogène et isotrope. Il s'agit en pratique d'une idéalisation, la recherche d'un référentiel inertiel étant un sujet délicat, et sa détermination concrète toujours approximative. Tout référentiel en mouvement de translation rectiligne et uniforme par rapport à un référentiel galiléen est lui-même galiléen : il existe donc une infinité de référentiels galiléens, les formules de passage de l'un à l'autre se faisant par transformation de Galilée, qui laisse inchangée la forme des lois du mouvement de Newton. En mécanique relativiste, le passage d'un référentiel galiléen à l'autre fait intervenir la transformation de Lorentz, qui se ramène à celle de Galilée pour des vitesses faibles devant celle de la lumière dans le vide. Les lois de la mécanique sont invariantes par changement de référentiel galiléen : ce postulat constitue le principe de la relativité galiléenne, qui toutefois n'est pas valable pour l'électrodynamique classique. En effet, les formules de passage d'un référentiel galiléen à un autre prévoient une dépendance de la vitesse de la lumière dans le vide c selon le référentiel par composition des vitesses, ce qui n'est pas observé. La prise en compte de cette invariance de c par changement de référentiel galiléen est à la base de la théorie de la relativité restreinte.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
PHYS-101(a): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
PHYS-101(k): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant.e les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant.e est capable d
PHYS-101(f): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Afficher plus
Publications associées (32)
Concepts associés (25)
Relativité restreinte
La relativité restreinte est la théorie élaborée par Albert Einstein en 1905 en vue de tirer toutes les conséquences physiques de la relativité galiléenne et du principe selon lequel la vitesse de la lumière dans le vide a la même valeur dans tous les référentiels galiléens (ou inertiels), ce qui était implicitement énoncé dans les équations de Maxwell (mais interprété bien différemment jusque-là, avec « l'espace absolu » de Newton et léther).
Bucket argument
Isaac Newton's rotating bucket argument (also known as Newton's bucket) was designed to demonstrate that true rotational motion cannot be defined as the relative rotation of the body with respect to the immediately surrounding bodies. It is one of five arguments from the "properties, causes, and effects" of "true motion and rest" that support his contention that, in general, true motion and rest cannot be defined as special instances of motion or rest relative to other bodies, but instead can be defined only by reference to absolute space.
Espace-temps
En physique, l'espace-temps est une représentation mathématique de l'espace et du temps comme deux notions inséparables et s'influençant l'une l'autre. En réalité, ce sont deux versions (vues sous un angle différent) d'une même entité. Cette conception de l'espace et du temps est l'un des grands bouleversements survenus au début du dans le domaine de la physique, mais aussi pour la philosophie. Elle est apparue avec la relativité restreinte et sa représentation géométrique qu'est l'espace de Minkowski ; son importance a été renforcée par la relativité générale.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.