Spectroscopie RMNvignette|redresse|Spectromètre RMN avec passeur automatique d'échantillons utilisé en chimie organique pour la détermination des structures chimiques. vignette|redresse|Animation présentant le principe de la Résonance Magnétique Nucléaire (RMN). La spectroscopie RMN est une technique qui exploite les propriétés magnétiques de certains noyaux atomiques. Elle est basée sur le phénomène de résonance magnétique nucléaire (RMN), utilisé également en sous le nom d’.
Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
Solid-state nuclear magnetic resonanceSolid-state NMR (ssNMR) spectroscopy is a technique for characterizing atomic level structure in solid materials e.g. powders, single crystals and amorphous samples and tissues using nuclear magnetic resonance (NMR) spectroscopy. The anisotropic part of many spin interactions are present in solid-state NMR, unlike in solution-state NMR where rapid tumbling motion averages out many of the spin interactions.
Nuclear magnetic resonance spectroscopy of proteinsNuclear magnetic resonance spectroscopy of proteins (usually abbreviated protein NMR) is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins, and also nucleic acids, and their complexes. The field was pioneered by Richard R. Ernst and Kurt Wüthrich at the ETH, and by Ad Bax, Marius Clore, Angela Gronenborn at the NIH, and Gerhard Wagner at Harvard University, among others.
Mesure extérieureLa notion de mesure extérieure (ou mesure extérieure au sens de Carathéodory) est un concept, dû au mathématicien Constantin Carathéodory, qui généralise dans un cadre axiomatique une construction utilisée par Henri Lebesgue pour définir la mesure de Lebesgue des parties Lebesgue-mesurables de la droite réelle. Soit un ensemble.
Fonction élémentaireEn mathématiques, une fonction élémentaire est une fonction d'une variable construite à partir d'un nombre fini d'exponentielles, logarithmes, constantes, et racines n-ièmes par composition et combinaisons utilisant les quatre opérations élémentaires (+ – × ÷). En permettant à ces fonctions (et les constantes) d'être complexes, les fonctions trigonométriques et leurs réciproques sont élémentaires. Les fonctions élémentaires ont été d'abord introduites par Joseph Liouville dans une série de publications de 1833 à 1841.
Corrélation (statistiques)En probabilités et en statistique, la corrélation entre plusieurs variables aléatoires ou statistiques est une notion de liaison qui contredit leur indépendance. Cette corrélation est très souvent réduite à la corrélation linéaire entre variables quantitatives, c’est-à-dire l’ajustement d’une variable par rapport à l’autre par une relation affine obtenue par régression linéaire. Pour cela, on calcule un coefficient de corrélation linéaire, quotient de leur covariance par le produit de leurs écarts types.
Mesure sigma-finieSoit (X, Σ, μ) un espace mesuré. On dit que la mesure μ est σ-finie lorsqu'il existe un recouvrement dénombrable de X par des sous-ensembles de mesure finie, c'est-à-dire lorsqu'il existe une suite (E) d'éléments de la tribu Σ, tous de mesure finie, avec Mesure finie Mesure de comptage sur un ensemble dénombrable Mesure de Lebesgue. En effet, l'ensemble des intervalles pour tous les nombres entiers est un recouvrement dénombrable de , et chacun des intervalles est de mesure 1.
Mesure (mathématiques)En mathématiques, une mesure positive (ou simplement mesure quand il n'y a pas de risque de confusion) est une fonction qui associe une grandeur numérique à certains sous-ensembles d'un ensemble donné. Il s'agit d'un important concept en analyse et en théorie des probabilités. Intuitivement, la mesure d'un ensemble ou sous-ensemble est similaire à la notion de taille, ou de cardinal pour les ensembles discrets. Dans ce sens, la mesure est une généralisation des concepts de longueur, aire ou volume dans des espaces de dimension 1, 2 ou 3 respectivement.
AnisotropieLanisotropie (contraire d'isotropie) est la propriété d'être dépendant de la direction. Quelque chose d'anisotrope pourra présenter différentes caractéristiques selon son orientation. Un exemple simple est celui des lunettes de soleil polarisantes qui ne laissent pas passer la lumière selon la direction dans laquelle on les regarde. Ceci est aussi visible sur certains écrans d'ordinateurs plats qui n'affichent pas les mêmes couleurs : on dit que leur rayonnement est anisotrope.