SpectroscopieLa spectroscopie, ou spectrométrie, est l'étude expérimentale du spectre d'un phénomène physique, c'est-à-dire de sa décomposition sur une échelle d'énergie, ou toute autre grandeur se ramenant à une énergie (fréquence, longueur d'onde). Historiquement, ce terme s'appliquait à la décomposition, par exemple par un prisme, de la lumière visible émise (spectrométrie d'émission) ou absorbée (spectrométrie d'absorption) par l'objet à étudier.
Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
Spectroscopie RMN en deux dimensionsLa spectroscopie RMN en deux dimensions ou spectroscopie RMN bidimensionnelle ou encore RMN-2D est un ensemble de dispositifs de reconnaissance de relations de proximité, dans l'espace ou à travers les liaisons, entre plusieurs noyaux actifs en RMN. Il s'agit de RMN de corrélation. Dans une expérience de spectroscopie RMN bidimensionnelle, le résultat est un spectre en trois dimensions : le déplacement chimique pour le noyau 1 (δ1), le déplacement chimique pour le noyau 2 (δ2) et l'intensité du signal.
Spectroscopie RMNvignette|redresse|Spectromètre RMN avec passeur automatique d'échantillons utilisé en chimie organique pour la détermination des structures chimiques. vignette|redresse|Animation présentant le principe de la Résonance Magnétique Nucléaire (RMN). La spectroscopie RMN est une technique qui exploite les propriétés magnétiques de certains noyaux atomiques. Elle est basée sur le phénomène de résonance magnétique nucléaire (RMN), utilisé également en sous le nom d’.
Nuclear magnetic resonance spectroscopy of proteinsNuclear magnetic resonance spectroscopy of proteins (usually abbreviated protein NMR) is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins, and also nucleic acids, and their complexes. The field was pioneered by Richard R. Ernst and Kurt Wüthrich at the ETH, and by Ad Bax, Marius Clore, Angela Gronenborn at the NIH, and Gerhard Wagner at Harvard University, among others.
Spectroscopie laser ultrarapideLa spectroscopie laser ultrarapide est une technique spectroscopique qui utilise des lasers à impulsions ultracourtes pour l'étude de la dynamique sur des échelles de temps extrêmement courtes, de l'attoseconde (10−18 s) à la nanoseconde (10−9 s). Différentes méthodes sont utilisées pour examiner la dynamique des porteurs de charge, des atomes et des molécules. De nombreuses procédures différentes ont été développées pour différentes échelles de temps et différentes plages d'énergie des photons ; quelques méthodes courantes sont énumérées ci-dessous.
In vivo magnetic resonance spectroscopyIn vivo magnetic resonance spectroscopy (MRS) is a specialized technique associated with magnetic resonance imaging (MRI). Magnetic resonance spectroscopy (MRS), also known as nuclear magnetic resonance (NMR) spectroscopy, is a non-invasive, ionizing-radiation-free analytical technique that has been used to study metabolic changes in brain tumors, strokes, seizure disorders, Alzheimer's disease, depression, and other diseases affecting the brain. It has also been used to study the metabolism of other organs such as muscles.
Solid-state nuclear magnetic resonanceSolid-state NMR (ssNMR) spectroscopy is a technique for characterizing atomic level structure in solid materials e.g. powders, single crystals and amorphous samples and tissues using nuclear magnetic resonance (NMR) spectroscopy. The anisotropic part of many spin interactions are present in solid-state NMR, unlike in solution-state NMR where rapid tumbling motion averages out many of the spin interactions.
Laserthumb|250px|Lasers rouges (660 & ), verts (532 & ) et bleus (445 & ). thumb|250px|Rayon laser à travers un dispositif optique. thumb|250px|Démonstration de laser hélium-néon au laboratoire Kastler-Brossel à l'Université Pierre-et-Marie-Curie. Un laser (acronyme issu de l'anglais light amplification by stimulated emission of radiation qui signifie « amplification de la lumière par émission stimulée de radiation ») est un système photonique.
Laser pumpingLaser pumping is the act of energy transfer from an external source into the gain medium of a laser. The energy is absorbed in the medium, producing excited states in its atoms. When the number of particles in one excited state exceeds the number of particles in the ground state or a less-excited state, population inversion is achieved. In this condition, the mechanism of stimulated emission can take place and the medium can act as a laser or an optical amplifier. The pump power must be higher than the lasing threshold of the laser.