Nuclear quadrupole resonanceNuclear quadrupole resonance spectroscopy or NQR is a chemical analysis technique related to nuclear magnetic resonance (NMR). Unlike NMR, NQR transitions of nuclei can be detected in the absence of a magnetic field, and for this reason NQR spectroscopy is referred to as "zero Field NMR". The NQR resonance is mediated by the interaction of the electric field gradient (EFG) with the quadrupole moment of the nuclear charge distribution.
Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
RefletUn reflet est, en physique, l' virtuelle formée par la réflexion spéculaire d'un objet sur une surface. La nature spéculaire de la réflexion est liée aux caractéristiques du corps réfléchissant. Les formes les plus connues s'obtiennent par réflexion sur une surface métallique (miroir), le verre ou l'eau. L'image virtuelle est inversée et se trouve de manière symétrique à l'objet par rapport au plan de réflexion (lois de Descartes). Un reflet est aussi une nuance de lumière ou de couleur apparaissant sur un fond ou un motif.
Spectroscopie RMNvignette|redresse|Spectromètre RMN avec passeur automatique d'échantillons utilisé en chimie organique pour la détermination des structures chimiques. vignette|redresse|Animation présentant le principe de la Résonance Magnétique Nucléaire (RMN). La spectroscopie RMN est une technique qui exploite les propriétés magnétiques de certains noyaux atomiques. Elle est basée sur le phénomène de résonance magnétique nucléaire (RMN), utilisé également en sous le nom d’.
Miroir planUn miroir plan est un miroir dont la surface est un plan de l'espace. Il possède des propriétés optiques de stigmatisme rigoureux (l'image d'un point est un point) et d'aplanétisme (l'image d'un plan est un plan). Le miroir plan possède de nombreuses applications en optique (déviation de rayon lumineux, calibration d'instruments...) mais également dans la vie courante où il est facilement disponible (miroir décoratif ou d'utilité cosmétique par exemple). L'image d'un objet par un miroir plan est le symétrique orthogonal de l'objet par rapport au plan du miroir.
MiroirUn miroir est un objet possédant une surface suffisamment polie pour qu'une s'y forme par réflexion et qui est conçu à cet effet. C'est souvent une couche métallique fine, qui, pour être protégée, est placée sous une plaque de verre pour les miroirs domestiques (les miroirs utilisés dans les instruments d'optiques comportent la face métallique au-dessus, le verre n'étant qu'un support de qualité mécanique stable). En termes de miroiterie, le miroir est une glace de petit volume, c'est-à-dire de petites dimensions.
Spectroscopie Mössbauerthumb|right|250px|Spectre Mössbauer du 57Fe La spectroscopie Mössbauer est une méthode de spectroscopie basée sur l'absorption de rayons gamma par les noyaux atomiques dans un solide. Par la mesure des transitions entre les niveaux d'énergie de ces noyaux, elle permet de remonter à différentes informations sur l'environnement local de l'atome. Elle doit son nom à Rudolf Mössbauer qui en a posé les bases en 1957 en démontrant l'existence de ces phénomènes d'absorption résonante sans effet de recul, ce qu'on appelle aujourd'hui l'effet Mössbauer.
Miroir sphériqueUn miroir sphérique est un miroir dont la forme est une calotte sphérique, c'est-à-dire une sphère tronquée par un plan. L'ouverture du miroir est donc un disque, et son axe optique est la droite normale à l'ouverture et passant par son centre. Il existe des miroirs sphériques convexes et concaves. Le miroir sphérique est astigmatique, c'est-à-dire que des rayons issus d'un même point source ne convergent pas. Il n'est stigmatique que pour son centre qui est sa propre image.
Diffraction de poudrevignette|320x320px|Paterne de poudre d'électron (rouge) d'un film d'aluminium avec une superposition de spirales (vert) et une ligne d'intersection (bleue) qui détermine le paramètre de réseau. La diffraction de poudre est une technique scientifique utilisant la diffraction aux rayons X, la diffraction de neutrons ou la diffraction des électrons sur des échantillons en poudre ou micro-cristallins pour la caractérisation structurale de matériaux. L'instrument dédié à l'exécution de ces mesures est appelé un diffractomètre de poudre.
Cristallographie aux rayons XLa cristallographie aux rayons X, radiocristallographie ou diffractométrie de rayons X (DRX, on utilise aussi souvent l'abréviation anglaise XRD pour X-ray diffraction) est une technique d'analyse fondée sur la diffraction des rayons X par la matière, particulièrement quand celle-ci est cristalline. La diffraction des rayons X est une diffusion élastique, c'est-à-dire sans perte d'énergie des photons (longueurs d'onde inchangées), qui donne lieu à des interférences d'autant plus marquées que la matière est ordonnée.