Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Mesure sigma-finieSoit (X, Σ, μ) un espace mesuré. On dit que la mesure μ est σ-finie lorsqu'il existe un recouvrement dénombrable de X par des sous-ensembles de mesure finie, c'est-à-dire lorsqu'il existe une suite (E) d'éléments de la tribu Σ, tous de mesure finie, avec Mesure finie Mesure de comptage sur un ensemble dénombrable Mesure de Lebesgue. En effet, l'ensemble des intervalles pour tous les nombres entiers est un recouvrement dénombrable de , et chacun des intervalles est de mesure 1.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
Stratégie d'évaluation (informatique)Un langage de programmation utilise une stratégie d'évaluation pour déterminer « quand » évaluer les arguments à l'appel d'une fonction (ou encore, opération, méthode) et « comment » passer les arguments à la fonction. Par exemple, dans l'appel par valeur, les arguments doivent être évalués avant d'être passés à la fonction. La stratégie d'évaluation d'un langage de programmation est spécifiée par la définition du langage même. En pratique, la plupart des langages de programmation (Java, C...
Forme normale (bases de données relationnelles)Dans une base de données relationnelle, une forme normale désigne un type de relation particulier entre les entités. La normalisation consiste à restructurer une base de données pour respecter certaines formes normales, afin d'éviter la redondance des données (des données apparaissent plusieurs fois) et d'assurer l'intégrité des données. Le but essentiel de la normalisation est d’éviter les anomalies transactionnelles pouvant découler d’une mauvaise modélisation des données et ainsi éviter un certain nombre de problèmes potentiels tels que les anomalies de lecture, les anomalies d’écriture, la redondance des données et la contre-performance.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Complétion d'une mesureEn mathématiques, une mesure μ est dite complète lorsque tout ensemble négligeable pour cette mesure appartient à la tribu sur laquelle μ est définie. Lorsqu'une mesure n'est pas complète, il existe un procédé assez simple de complétion de la mesure, c'est-à-dire de construction d'une mesure complète apparentée de très près à la mesure initiale. Ainsi la mesure de Lebesgue (considérée comme mesure sur la tribu de Lebesgue) est la complétion de la mesure dite parfois « mesure de Borel-Lebesgue », c'est-à-dire sa restriction à la tribu borélienne.
Argumentation schemeIn argumentation theory, an argumentation scheme or argument scheme is a template that represents a common type of argument used in ordinary conversation. Many different argumentation schemes have been identified. Each one has a name (for example, argument from effect to cause) and presents a type of connection between premises and a conclusion in an argument, and this connection is expressed as a rule of inference. Argumentation schemes can include inferences based on different types of reasoning—deductive, inductive, abductive, probabilistic, etc.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.