Isoelastic utilityIn economics, the isoelastic function for utility, also known as the isoelastic utility function, or power utility function, is used to express utility in terms of consumption or some other economic variable that a decision-maker is concerned with. The isoelastic utility function is a special case of hyperbolic absolute risk aversion and at the same time is the only class of utility functions with constant relative risk aversion, which is why it is also called the CRRA utility function.
Reconnaissance de formesthumb|Reconnaissance de forme à partir de modélisation en 3D La reconnaissance de formes (ou parfois reconnaissance de motifs) est un ensemble de techniques et méthodes visant à identifier des régularités informatiques à partir de données brutes afin de prendre une décision dépendant de la catégorie attribuée à ce motif. On considère que c'est une branche de l'intelligence artificielle qui fait largement appel aux techniques d'apprentissage automatique et aux statistiques.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
DébruitageLe débruitage est une technique d'édition qui consiste à supprimer des éléments indésirables (« bruit »), afin de rendre un document, un signal (numérique ou analogique) ou un environnement plus intelligible ou plus pur. Ne pas confondre le débruitage avec la réduction de bruit. Sur le plan sonore, le débruitage consiste à réduire ou anéantir le rendu d'ondes sonores « parasites » (ou « bruit »).
Empirical probabilityIn probability theory and statistics, the empirical probability, relative frequency, or experimental probability of an event is the ratio of the number of outcomes in which a specified event occurs to the total number of trials, i.e., by means not of a theoretical sample space but of an actual experiment. More generally, empirical probability estimates probabilities from experience and observation. Given an event A in a sample space, the relative frequency of A is the ratio \tfrac m n, m being the number of outcomes in which the event A occurs, and n being the total number of outcomes of the experiment.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Utilité (économie)En économie, l'utilité est une qualité d'un objet par laquelle est possible une mesure relative au bien-être ou de la satisfaction présente par la consommation, ou le profit trouvable d'un bien ou d'un nombre de services. Elle est liée mais distincte au besoin d'un consommateur. Ce concept est utilisé dans les fonctions d'utilité, fonctions d'utilité sociale, optimum au sens de Wilfredo Pareto, boîtes d'Edgeworth. C'est un concept central de l'économie du bien-être. À l'origine, la notion d'utilité est essentiellement liée à la prise de risque.
Théorie de l'utilité espéréeLa théorie de l'utilité espérée (aussi appelée théorie EU, de l'anglais « expected utility ») est une théorie de la décision en environnement risqué développée par John von Neumann et Oskar Morgenstern dans leur ouvrage Theory of Games and Economic Behavior (1944). Introduisons d'abord quelques notations: L'incertitude est décrite par un ensemble d'états du monde partitionné par la famille de parties (de taille ). Un élément de est appelé événement. Une variable aléatoire est une fonction qui associe à chaque un résultat noté .
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Fonction d'erreurthumb|right|upright=1.4|Construction de la fonction d'erreur réelle. En mathématiques, la fonction d'erreur (aussi appelée fonction d'erreur de Gauss) est une fonction entière utilisée en analyse. Cette fonction se note erf et fait partie des fonctions spéciales. Elle est définie par : La fonction erf intervient régulièrement dans le domaine des probabilités et statistiques, ainsi que dans les problèmes de diffusion (de la chaleur ou de la matière).