Espace d'échelleLa théorie de lEspace d'échelle () est un cadre pour la représentation du signal développé par les communautés de la vision artificielle, du , et du traitement du signal. C'est une théorie formelle pour manipuler les structures de l'image à différentes échelles, en représentant une image comme une famille d'images lissées à un paramètre, la représentation d'espace échelle, paramétrée par la taille d'un noyau lissant utilisé pour supprimer les structures dans les petites échelles. Soit un signal.
Scale-invariant feature transform[[Fichier:Matching of two images using the SIFT method.jpg|thumb|right|alt=Exemple de mise en correspondance de deux images par la méthode SIFT : des lignes vertes relient entre eux les descripteurs communs à un tableau et une photo de ce même tableau, de moindre qualité, ayant subi des transformations. |Exemple de résultat de la comparaison de deux images par la méthode SIFT (Fantasia ou Jeu de la poudre, devant la porte d’entrée de la ville de Méquinez, par Eugène Delacroix, 1832).
DérivéeEn mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée). Les calculs de dérivées sont un outil fondamental du calcul infinitésimal. Par exemple, la dérivée de la position d'un objet en mouvement par rapport au temps est la vitesse (instantanée) de l'objet. La dérivée d'une fonction est une fonction qui, à tout nombre pour lequel admet un nombre dérivé, associe ce nombre dérivé.
Speeded Up Robust FeaturesSpeeded Up Robust Features (SURF), que l'on peut traduire par caractéristiques robustes accélérées, est un algorithme de détection de caractéristique et un descripteur, présenté par des chercheurs de l'ETH Zurich et de la Katholieke Universiteit Leuven pour la première fois en 2006 puis dans une version révisée en 2008. Il est utilisé dans le domaine de vision par ordinateur, pour des tâches de détection d'objet ou de reconstruction 3D.
Dérivée secondeLa dérivée seconde est la dérivée de la dérivée d'une fonction, lorsqu'elle est définie. Elle permet de mesurer l'évolution des taux de variations. Par exemple, la dérivée seconde du déplacement par rapport au temps est la variation de la vitesse (taux de variation du déplacement), soit l'accélération. Si la fonction admet une dérivée seconde, on dit qu'elle est de classe D2 ; si de plus cette dérivée seconde est continue, la fonction est dite de classe C2.
Test de la dérivée premièreEn analyse réelle, le test de la dérivée première permet de déterminer l'allure d'une fonction dérivable en étudiant le signe de sa dérivée. Grâce à ce test, on peut déduire les extrema locaux, le sens de variation de f et les points d'inflexion « horizontaux », permettant ainsi de donner une allure du graphe de la fonction . Soit avec un intervalle ouvert réel (par exemple où et sont des réels). On suppose de plus que dérivable sur .
Flux standardEn informatique, les flux standard (standard stream en anglais) sont des canaux pour l'entrée et la sortie de données sur les systèmes d'exploitation UNIX et assimilés. L'accès à ces flux est habituellement fourni par la bibliothèque stdio.h du langage de programmation C. Ces flux sont au nombre de trois, au travers desquels les programmes peuvent faire entrer ou sortir des informations. Les utilisateurs connaissent généralement ces flux comme moyen par lequel un texte provenant d'un input device, et un texte s'affichant sur un afficheur sont transmis.
Third derivativeIn calculus, a branch of mathematics, the third derivative or third-order derivative is the rate at which the second derivative, or the rate of change of the rate of change, is changing. The third derivative of a function can be denoted by Other notations can be used, but the above are the most common. Let . Then and . Therefore, the third derivative of f is, in this case, or, using Leibniz notation, Now for a more general definition. Let f be any function of x such that f ′′ is differentiable.
Generalizations of the derivativeIn mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc. The Fréchet derivative defines the derivative for general normed vector spaces . Briefly, a function , an open subset of , is called Fréchet differentiable at if there exists a bounded linear operator such that Functions are defined as being differentiable in some open neighbourhood of , rather than at individual points, as not doing so tends to lead to many pathological counterexamples.
Dérivée partielleEn mathématiques, la dérivée partielle d'une fonction de plusieurs variables est sa dérivée par rapport à l'une de ses variables, les autres étant gardées constantes. C'est une notion de base de l'analyse en dimension , de la géométrie différentielle et de l'analyse vectorielle. La dérivée partielle de la fonction par rapport à la variable est souvent notée . Si est une fonction de et sont les accroissements infinitésimaux de respectivement, alors l'accroissement infinitésimal correspondant de est : Cette expression est la « différentielle totale » de , chaque terme dans la somme étant une « différentielle partielle » de .