MyélineLa myéline est une membrane spécialisée des cellules gliales myélinisantes du système nerveux (les cellules de Schwann pour le système nerveux périphérique et les oligodendrocytes pour le système nerveux central), qui s'enroule autour des axones des neurones et permet leur isolation. Ceci induit l'accélération de la vitesse de conduction des potentiels d'action, et l'apparition d'une conduction saltatoire. Le terme a été inventé en 1854 par le médecin pathologiste Rudolf Virchow, sans doute par analogie avec la substance blanchâtre et molle de la moelle osseuse.
False positives and false negativesA false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test result incorrectly indicates the absence of a condition when it is actually present. These are the two kinds of errors in a binary test, in contrast to the two kinds of correct result (a and a ).
AxoneLaxone, ou fibre nerveuse, est le prolongement du neurone qui conduit le signal électrique du corps cellulaire vers les zones synaptiques. Le long de l'axone, ce signal est constitué de potentiels d'action. Les autres prolongements du neurone sont les dendrites qui conduisent le signal des synapses au corps cellulaire. Les neurones ont le plus souvent un seul axone et plusieurs dendrites. Néanmoins, la terminaison de l'axone est très ramifiée — on parle d'arborisation terminale — ce qui lui permet de contacter plusieurs autres neurones avec la même information.
Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Euclidean distanceIn mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occasionally being called the Pythagorean distance. These names come from the ancient Greek mathematicians Euclid and Pythagoras, although Euclid did not represent distances as numbers, and the connection from the Pythagorean theorem to distance calculation was not made until the 18th century.
Rigid transformationIn mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points. The rigid transformations include rotations, translations, reflections, or any sequence of these. Reflections are sometimes excluded from the definition of a rigid transformation by requiring that the transformation also preserve the handedness of objects in the Euclidean space.
Fibre optiqueUne fibre optique est un fil dont l’âme, très fine et faite de verre ou de plastique, a la propriété de conduire la lumière et sert pour la fibroscopie, l'éclairage ou la transmission de données numériques. Elle offre un débit d'information nettement supérieur à celui des câbles coaxiaux et peut servir de support à un réseau « large bande » par lequel transitent aussi bien la télévision, le téléphone, la visioconférence ou les données informatiques.
Espace euclidienEn mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique classique, le plan ainsi que l'espace qui nous entoure. Un espace euclidien permet également de traiter les dimensions supérieures ; il est défini par la donnée d'un espace vectoriel sur le corps des réels, de dimension finie, muni d'un produit scalaire, qui permet de « mesurer » distances et angles.
Transformation géométriqueUne transformation géométrique est une bijection d'une partie d'un ensemble géométrique dans lui-même. L'étude de la géométrie est en grande partie l'étude de ces transformations. Les transformations géométriques peuvent être classées selon la dimension de l'ensemble géométrique : principalement les transformations planes et les transformations dans l'espace. On peut aussi classer les transformations d'après leurs éléments conservés : Jusqu'à l'avant dernière, chacune de ces classes contient la précédente.
Application affineEn géométrie, une application affine est une application entre deux espaces affines qui est compatible avec leur structure. Cette notion généralise celle de fonction affine de R dans R (), sous la forme , où est une application linéaire et est un point. Une bijection affine (qui est un cas particulier de transformation géométrique) envoie les sous-espaces affines, comme les points, les droites ou les plans, sur le même type d'objet géométrique, tout en préservant la notion de parallélisme.