Fibré principalEn topologie, de manière informelle, un fibré principal sur un espace topologique X est un espace ressemblant localement à un produit de X par un groupe topologique. En particulier, un fibré principal est un espace fibré, mais c'est bien plus encore. Il est muni d'un groupe, le groupe structural, décrivant la manière dont les trivialisations locales se recollent entre elles. La théorie des fibrés principaux recouvre la théorie des fibrés vectoriels, de leurs orientations, de leurs structures riemanniennes, de leurs structures symplectiques, etc.
Fibré vectorielEn topologie différentielle, un fibré vectoriel est une construction géométrique ayant une parenté avec le produit cartésien, mais apportant une structure globale plus riche. Elle fait intervenir un espace topologique appelé base et un espace vectoriel modèle appelé fibre modèle. À chaque point de la base est associée une fibre copie de la fibre modèle, l'ensemble formant un nouvel espace topologique : l'espace total du fibré. Celui-ci admet localement la structure d'un produit cartésien de la base par la fibre modèle, mais peut avoir une topologie globale plus compliquée.
Fibré en droitesEn mathématiques, un fibré en droites est une construction qui décrit une droite attachée en chaque point d'un espace. Par exemple, une courbe dans le plan possède une tangente en chaque point, et si la courbe est suffisamment lisse alors la tangente évolue de manière « continue » lorsqu'on se déplace sur la courbe. De manière plus formelle on peut définir un fibré en droites comme un fibré vectoriel de rang 1.
Fibré des repèresEn géométrie différentielle, un fibré des repères est un certain type de fibré principal qui correspond à un fibré vectoriel sur une variété différentielle. Les points du fibré des repères sont les repères linéaires des fibres du fibré vectoriel correspondant. L'exemple le plus commun de fibré des repères est le fibré des repères tangents correspondant au fibré tangent d'une variété différentielle.
Bundle mapIn mathematics, a bundle map (or bundle morphism) is a morphism in the of fiber bundles. There are two distinct, but closely related, notions of bundle map, depending on whether the fiber bundles in question have a common base space. There are also several variations on the basic theme, depending on precisely which category of fiber bundles is under consideration. In the first three sections, we will consider general fiber bundles in the . Then in the fourth section, some other examples will be given.
FibréEn mathématiques, un espace fibré est, intuitivement, un espace topologique qui est localement le produit de deux espaces — appelés la base et la fibre — mais en général pas globalement. Par exemple, le ruban de Möbius est un fibré de base un cercle et de fibre un segment de droite : il ressemble localement au produit d'un cercle par un segment, mais pas globalement comme le cylindre Plus précisément, l'espace total du fibré est muni d'une projection continue sur la base, telle que la de chaque point soit homéomorphe à la fibre.
Plastique à renfort de verreUn plastique à renfort de verre (ou Polyester Renforcé de fibres de Verre ou Polymère Renforcé aux fibres de Verre, symbolisé habituellement par ses initiales PRV ; en anglais, glass-reinforced plastic ou GRP) est un matériau composite constitué d’une matrice polymère (appelée résine) renforcée par des fibres ou parfois par des microsphères de verre. La résine est généralement un polyester thermodurcissable, un époxyde, un vinylester ou thermoplastique (polyamide, par exemple).
Projective bundleIn mathematics, a projective bundle is a fiber bundle whose fibers are projective spaces. By definition, a scheme X over a Noetherian scheme S is a Pn-bundle if it is locally a projective n-space; i.e., and transition automorphisms are linear. Over a regular scheme S such as a smooth variety, every projective bundle is of the form for some vector bundle (locally free sheaf) E. Every vector bundle over a variety X gives a projective bundle by taking the projective spaces of the fibers, but not all projective bundles arise in this way: there is an obstruction in the cohomology group H2(X,O*).
Plastique renforcé de fibresthumb|Cuves en plastique à renfort fibre de verre. thumb|Tissu fibre de verre/aramide (pour haute traction et compression). Un plastique renforcé de fibres ou polymère renforcé de fibres (en anglais, fibre-reinforced plastic ou FRP) est un matériau composite constitué d’une matrice polymère (appelée résine) renforcée par de fines fibres (souvent synthétiques) à haut module. La résine est généralement un polyester thermodurcissable, un époxyde, un vinylester, ou thermoplastique (polyamide...
Moulage par compressionvignette|Schéma simplifié du procédé de moulage par compressionLe moulage par compression est un procédé de mise en forme par moulage de pièces en matériaux plastiques ou composites. Ces matériaux peuvent être à base des thermoplastiques et surtout des thermodurcissables. Le moulage par compression est principalement utilisé pour la fabrication d'objets de faibles épaisseurs de forme plane ou voisine de celle d'une boite. Exemples : couverts, boutons, poignées, grands récipients.