Controlled NOT gateIn computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer. It can be used to entangle and disentangle Bell states. Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations. The gate is sometimes named after Richard Feynman who developed an early notation for quantum gate diagrams in 1986.
Méthode de Monte-CarloUne méthode de Monte-Carlo, ou méthode Monte-Carlo, est une méthode algorithmique visant à calculer une valeur numérique approchée en utilisant des procédés aléatoires, c'est-à-dire des techniques probabilistes. Les méthodes de Monte-Carlo sont particulièrement utilisées pour calculer des intégrales en dimensions plus grandes que 1 (en particulier, pour calculer des surfaces et des volumes). Elles sont également couramment utilisées en physique des particules, où des simulations probabilistes permettent d'estimer la forme d'un signal ou la sensibilité d'un détecteur.
Bruit roseLe bruit rose est un signal aléatoire dont la densité spectrale est constante par bande d'octave. Sa densité spectrale de puissance est inversement proportionnelle à la fréquence du signal. Tandis que le bruit blanc a une énergie spectrale constante sur l'intégralité de l'échelle des fréquences, soit par hertz, le bruit rose possède lui une énergie constante par bande d'octave. Par exemple, avec le bruit rose, la bande d'octave s'étalant de 500 à 1000 hertz contient la même énergie que celle s'étalant de 4000 à 8000 hertz.
Microscopie à sonde localeLa microscopie à sonde locale (MSL) ou microscopie en champ proche (MCP) ou scanning probe microscopy (SPM) en anglais est une technique de microscopie permettant de cartographier le relief (nano-topographie) ou une autre grandeur physique en balayant la surface à imager à l'aide d'une pointe très fine (la pointe est idéalement un cône se terminant par un seul atome). Le pouvoir de résolution obtenu par cette technique permet d'observer jusqu'à des atomes, ce qui est physiquement impossible avec un microscope optique, quel que soit son grossissement.
Bruit numériqueDans une , on appelle bruit numérique toute fluctuation parasite ou dégradation que subit l'image de l'instant de son acquisition jusqu'à son enregistrement. Le bruit numérique est une notion générale à tout type d'image numérique, et ce quel que soit le type du capteur à l'origine de son acquisition (appareil photo numérique, scanner, caméra thermique...etc). Les sources de bruit numérique sont multiples, certaines sont physiques liées à la qualité de l’éclairage, de la scène, la température du capteur, la stabilité du capteur de l'image durant l'acquisition, d'autres apparaissent durant la numérisation de l'information.
Image matricielleUne image matricielle, ou « carte de points » (de l'anglais bitmap), est une image constituée d'une matrice de points colorés. C'est-à-dire, constituée d'un tableau, d'une grille, où chaque case possède une couleur qui lui est propre et est considérée comme un point. Il s'agit donc d'une juxtaposition de points de couleurs formant, dans leur ensemble, une image. Cette expression est principalement utilisée dans les domaines de l' (infographie, informatique, photographie numérique) afin de marquer l'opposition de ce concept avec celui des .
Produit de convolutionEn mathématiques, le produit de convolution est un opérateur bilinéaire et un produit commutatif, généralement noté « ∗ », qui, à deux fonctions f et g sur un même domaine infini, fait correspondre une autre fonction « f ∗ g » sur ce domaine, qui en tout point de celui-ci est égale à l'intégrale sur l'entièreté du domaine (ou la somme si celui-ci est discret) d'une des deux fonctions autour de ce point, pondérée par l'autre fonction autour de l'origine — les deux fonctions étant parcourues en sens contraire
Méthode de Monte-Carlo par chaînes de MarkovLes méthodes de Monte-Carlo par chaînes de Markov, ou méthodes MCMC pour Markov chain Monte Carlo en anglais, sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes de Monte-Carlo se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner. Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (algorithme de Metropolis-Hastings, échantillonnage de Gibbs), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive).
Microscopie électronique à balayagethumb|right|Premier microscope électronique à balayage par M von Ardenne thumb|right|Microscope électronique à balayage JEOL JSM-6340F thumb|upright=1.5|Principe de fonctionnement du Microscope Électronique à Balayage La microscopie électronique à balayage (MEB) ou scanning electron microscope (SEM) en anglais est une technique de microscopie électronique capable de produire des images en haute résolution de la surface d’un échantillon en utilisant le principe des interactions électrons-matière.
Microscope à effet tunnelthumb|Atomes de silicium à la surface d'un cristal de carbure de silicium (SiC). Image obtenue à l'aide d'un STM. Le microscope à effet tunnel (en anglais, scanning tunneling microscope, STM) est inventé en 1981 par des chercheurs d'IBM, Gerd Binnig et Heinrich Rohrer, qui reçurent le prix Nobel de physique pour cette invention en 1986. C'est un microscope en champ proche qui utilise un phénomène quantique, l'effet tunnel, pour déterminer la morphologie et la densité d'états électroniques de surfaces conductrices ou semi-conductrices avec une résolution spatiale pouvant être égale ou inférieure à la taille des atomes.