DébruitageLe débruitage est une technique d'édition qui consiste à supprimer des éléments indésirables (« bruit »), afin de rendre un document, un signal (numérique ou analogique) ou un environnement plus intelligible ou plus pur. Ne pas confondre le débruitage avec la réduction de bruit. Sur le plan sonore, le débruitage consiste à réduire ou anéantir le rendu d'ondes sonores « parasites » (ou « bruit »).
Ondelettethumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.
Fonction gaussiennevignette|Fonction gaussienne pour μ = 0, σ = 1 ; courbe centrée en zéro. Une fonction gaussienne est une fonction en exponentielle de l'opposé du carré de l'abscisse (une fonction en exp(-x)). Elle a une forme caractéristique de courbe en cloche. L'exemple le plus connu est la densité de probabilité de la loi normale où μ est l'espérance mathématique et σ est l'écart type. Les fonctions gaussiennes sont analytiques, de limite nulle en l'infini. La largeur à mi-hauteur H vaut la demi-largeur à mi-hauteur vaut donc environ 1,177·σ.
Discrete wavelet transformIn numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
Séparation isotopiqueLa séparation isotopique est le processus qui consiste à augmenter la concentration des isotopes d'un élément chimique. Les noyaux atomiques sont constitués de nucléons : Z protons et N neutrons, soit A=Z+N nucléons en tout. Pour garantir sa neutralité, l’atome doit entourer ce noyau d’un nuage d’exactement Z électrons, puisque proton et électron portent tous deux une charge électrique élémentaire, le premier positive, le second négative. Or les propriétés chimiques de l’atome résultant dépendent essentiellement du nuage électronique, donc de Z.
Gaussian blurIn , a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce and reduce detail. The visual effect of this blurring technique is a smooth blur resembling that of viewing the image through a translucent screen, distinctly different from the bokeh effect produced by an out-of-focus lens or the shadow of an object under usual illumination.
Bruit thermiqueLe bruit thermique, également nommé bruit de résistance, bruit Johnson ou bruit de Johnson-Nyquist, est le bruit généré par l'agitation thermique des porteurs de charges, c'est-à-dire des électrons dans une résistance électrique en équilibre thermique. Ce phénomène a lieu indépendamment de toute tension appliquée. Le bruit thermique aux bornes d'une résistance est exprimée par la relation de Nyquist : où est la variance de la tension aux bornes de la résistance, est la constante de Boltzmann, qui vaut kB = 1,3806 × 10-23 J.
Bruit additif blanc gaussienLe bruit additif blanc gaussien est un modèle élémentaire de bruit utilisé en théorie de l'information pour imiter de nombreux processus aléatoires qui se produisent dans la nature. Les adjectifs indiquent qu'il est : additif il s'ajoute au bruit intrinsèque du système d'information ; blanc sa puissance est uniforme sur toute la largeur de bande de fréquences du système, par opposition avec un bruit coloré qui privilégie une bande de fréquences par analogie avec une lumière colorée dans le spectre visible ; gaussien il a une distribution normale dans le domaine temporel avec une moyenne nulle (voir bruit gaussien).
Digital image processingDigital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Bruit de mesureEn métrologie, le bruit de mesure est l'ensemble des signaux parasites qui se superposent au signal que l'on cherche à obtenir au moyen d'une mesure d'un phénomène physique. Ces signaux sont une gêne pour la compréhension de l'information que le signal transporte. La métrologie vise donc notamment à connaître leurs origines et à les caractériser, afin de les éliminer et d'obtenir le signal d'origine aussi distinctement que possible. La source du bruit d'origine externe est externe au système physique générant le signal utile et agit par influence sur celui-ci.