Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper a new localization approach combining the metric and topological paradigm is presented. The main idea is to connect local metric maps by means of a global topological map. This allows a compact environment model which does not require global metric consistency and permits both precision and robustness. The method uses a 360 degree laser scanner in order to extract lines for the metric localization and doors, discontinuities and hallways for the topological approach. The approach has been widely tested in a 50 x 25 m portion of the institute building with the new fully autonomous robot Donald Duck. 25 randomly generated test missions have been performed with a success ratio of 96% and a mean error at the goal point of 9 mm for an overall trajectory length of 1.15 km. Future work will focus on a similar hybrid approach for simultaneous localization and automatic mapping.
Jan Skaloud, Philipp Clausen, Julien Vallet
Alcherio Martinoli, Zeynab Talebpour, Alessio Canepa