Topological quantum field theoryIn gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory.
Isolant topologiqueUn isolant topologique est un matériau ayant une structure de bande de type isolant mais qui possède des états de surface métalliques. Ces matériaux sont donc isolants "en volume" et conducteurs en surface. En 2007, cet état de matière a été réalisé pour la première fois en 2D dans un puits quantique de (Hg,Cd)Te . Le BiSb (antimoniure de bismuth) est le premier isolant topologique 3D à être réalisé. La spectroscopie de photoélectrons résolue en angle a été l'outil principal qui a servi à confirmer l'existence de l'état isolant topologique en 3D.
Topological orderIn physics, topological order is a kind of order in the zero-temperature phase of matter (also known as quantum matter). Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.
Tenseur métriqueEn géométrie, et plus particulièrement en géométrie différentielle, le tenseur métrique est un tenseur d'ordre 2 permettant de définir le produit scalaire de deux vecteurs en chaque point d'un espace, et qui est utilisé pour la mesure des longueurs et des angles. Il généralise le théorème de Pythagore. Dans un système de coordonnées donné, le tenseur métrique peut se représenter comme une matrice symétrique, généralement notée , pour ne pas confondre la matrice (en majuscule) et le tenseur métrique g.
Cartographie et localisation simultanéesvignette|Une carte générée par le robot Darmstadt. La localisation et cartographie simultanées, connue en anglais sous le nom de SLAM (simultaneous localization and mapping) ou CML (concurrent mapping and localization), consiste, pour un robot ou véhicule autonome, à simultanément construire ou améliorer une carte de son environnement et de s’y localiser. La plupart des robots industriels sont fixes et effectuent des tâches dans un environnement connu.
Topological quantum computerA topological quantum computer is a theoretical quantum computer proposed by Russian-American physicist Alexei Kitaev in 1997. It employs quasiparticles in two-dimensional systems, called anyons, whose world lines pass around one another to form braids in a three-dimensional spacetime (i.e., one temporal plus two spatial dimensions). These braids form the logic gates that make up the computer. The advantage of a quantum computer based on quantum braids over using trapped quantum particles is that the former is much more stable.
Carte géographiquethumb|right|Esquisse explicative de la plus ancienne carte géographique connue (époque sumérienne, env. 2500 av. J.-C.) vignette|250px|Carte mondiale datant de 1154 réalisée par Al Idrissi pour Roger II de Sicile (ici retournée à ). thumb|right|upright=1.3|Tabula Rogeriana, dessiné par Muhammad al-Idrisi pour Roger II de Sicile (ici retournée à ). Une carte géographique est une représentation d'un espace géographique. Elle met en valeur l'étendue de cet espace, sa localisation relative par rapport aux espaces voisins, ainsi que la localisation des éléments qu'il contient.
Variété kählérienneEn mathématiques, une variété kählérienne ou variété de Kähler est une variété différentielle équipée d'une structure unitaire satisfaisant une condition d'intégrabilité. C'est en particulier une variété riemannienne, une variété symplectique et une variété complexe, ces trois structures étant mutuellement compatibles. Les variétés kählériennes sont un objet d'étude naturel en géométrie différentielle complexe. Elles doivent leur nom au mathématicien Erich Kähler. Plusieurs définitions équivalentes existent.
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Télémètre laserUn télémètre laser est un appareil permettant de mesurer les distances. Un rayon laser est projeté sur une cible qui renvoie à son tour le rayon lumineux. Le boîtier électronique calcule le déphasage entre l'émission et la réception. Un rayon modulé en fréquence est projeté sur une cible. La cible renvoie ce rayon vers l'appareil. Le temps mis par le rayon pour revenir est mesuré et la distance séparant l'utilisateur de la cible est calculée. Un principe voisin est utilisé par les forces de l’ordre pour effectuer des contrôles de vitesse.