Scale-invariant feature transform[[Fichier:Matching of two images using the SIFT method.jpg|thumb|right|alt=Exemple de mise en correspondance de deux images par la méthode SIFT : des lignes vertes relient entre eux les descripteurs communs à un tableau et une photo de ce même tableau, de moindre qualité, ayant subi des transformations. |Exemple de résultat de la comparaison de deux images par la méthode SIFT (Fantasia ou Jeu de la poudre, devant la porte d’entrée de la ville de Méquinez, par Eugène Delacroix, 1832).
Filtre de Kalmanvignette| Concept de base du filtre de Kalman. En statistique et en théorie du contrôle, le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d'un système dynamique à partir d'une série de mesures incomplètes ou bruitées. Le filtre a été nommé d'après le mathématicien et informaticien américain d'origine hongroise Rudolf Kálmán. Le filtre de Kalman est utilisé dans une large gamme de domaines technologiques (radar, vision électronique, communication...).
Capture de mouvementLa capture de mouvement (motion capture en anglais, parfois abrégé en mocap) est une technique permettant d'enregistrer les positions et rotations d'objets ou de membres d'êtres vivants, pour en contrôler une contrepartie virtuelle sur ordinateur (caméra, modèle 3D, ou avatar). Une restitution visuelle de ces mouvements en temps réel est faite via le moteur de rendu 3D de l'application interfacée avec le matériel utilisé qui peut les stocker dans un fichier d'animation de type BVH pour être traités ultérieurement dans un logiciel 3D classique (Maya, 3dsMax, XSI, Cinema4d, etc.
Finger trackingIn the field of gesture recognition and , finger tracking is a high-resolution technique developed in 1969 that is employed to know the consecutive position of the fingers of the user and hence represent objects in 3D. In addition to that, the finger tracking technique is used as a tool of the computer, acting as an external device in our computer, similar to a keyboard and a mouse. The finger tracking system is focused on user-data interaction, where the user interacts with virtual data, by handling through the fingers the volumetric of a 3D object that we want to represent.
Filtre particulaireLes filtres particulaires, aussi connus sous le nom de méthodes de Monte-Carlo séquentielles, sont des techniques sophistiquées d'estimation de modèles fondées sur la simulation. Les filtres particulaires sont généralement utilisés pour estimer des réseaux bayésiens et constituent des méthodes 'en-ligne' analogues aux méthodes de Monte-Carlo par chaînes de Markov qui elles sont des méthodes 'hors-ligne' (donc a posteriori) et souvent similaires aux méthodes d'échantillonnage préférentiel.
Pose trackingIn virtual reality (VR) and augmented reality (AR), a pose tracking system detects the precise pose of head-mounted displays, controllers, other objects or body parts within Euclidean space. Pose tracking is often referred to as 6DOF tracking, for the six degrees of freedom in which the pose is often tracked. Pose tracking is sometimes referred to as positional tracking, but the two are separate. Pose tracking is different from positional tracking because pose tracking includes orientation whereas and positional tracking does not.
Feature (computer vision)In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
TrackingVideo tracking is the process of locating a moving object (or multiple objects) over time using a camera. It has a variety of uses, some of which are: human-computer interaction, security and surveillance, video communication and compression, augmented reality, traffic control, medical imaging and video editing. Video tracking can be a time-consuming process due to the amount of data that is contained in video. Adding further to the complexity is the possible need to use object recognition techniques for tracking, a challenging problem in its own right.
Match movingLe match moving est une technique utilisée dans le domaine des effets visuels et liée à la capture de mouvement. Ce terme est employé pour faire référence aux différentes techniques permettant d'extraire les informations de mouvement depuis une séquence vidéo, et plus particulièrement les mouvements de caméra. Est également connu sous le nom de motion tracking. Dans cet article, match moving sera défini comme l'art d'extraire l'information de mouvement depuis une unique séquence vidéo.
Vue à la troisième personneLa vue à la troisième personne, souvent appelée vue objective (ou « vision objective »), est utilisée dans les jeux vidéo : la caméra est placée derrière ou à côté du personnage dirigé par le joueur. La notion de vue à la troisième personne (vue objective) s'oppose à celle de vue à la première personne (ou vue subjective). Le joueur voit tout ou partie du personnage-joueur, qu'il maîtrise, ce qui lui permet d'assister à toutes les actions qu'il réalise. Cette vue peut être intéressante pour prendre du recul par rapport aux événements.