Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Complexité en espaceEn algorithmique, la complexité en espace est une mesure de l'espace utilisé par un algorithme, en fonction de propriétés de ses entrées. L'espace compte le nombre maximum de cases mémoire utilisées simultanément pendant un calcul. Par exemple le nombre de symboles qu'il faut conserver pour pouvoir continuer le calcul. Usuellement l'espace que l'on prend en compte lorsque l'on parle de l'espace nécessaire pour des entrées ayant des propriétés données est l'espace nécessaire le plus grand parmi ces entrées ; on parle de complexité en espace dans le pire cas.
Réducteur (chimie)En chimie, un réducteur est un corps simple, un composé ou un ion qui cède au moins un électron à une autre espèce chimique lors d'une réaction d'oxydoréduction. Le réducteur ayant perdu au moins un électron au cours de cette réaction est dit oxydé, tandis que l'espèce chimique qui a reçu au moins un électron est dite réduite. Un réducteur est généralement proche de son état d'oxydation le plus faible — historiquement, la réduction correspondait à l'élimination de l'oxygène d'une substance — et se comporte par conséquent comme un donneur d'électron.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Complexité de KolmogorovEn informatique théorique et en mathématiques, plus précisément en théorie de l'information, la complexité de Kolmogorov, ou complexité aléatoire, ou complexité algorithmique d'un objet — nombre, , chaîne de caractères — est la taille du plus petit algorithme (dans un certain langage de programmation fixé) qui engendre cet objet. Elle est nommée d'après le mathématicien Andreï Kolmogorov, qui publia sur le sujet dès 1963. Elle est aussi parfois nommée complexité de Kolmogorov-Solomonoff.
Goal orientationGoal orientation, or achievement orientation, is an "individual disposition towards developing or validating one's ability in achievement settings". In general, an individual can be said to be mastery or performance oriented, based on whether one's goal is to develop one's ability or to demonstrate one's ability, respectively. A mastery orientation is also sometimes referred to as a learning orientation. Goal orientation refers to how an individual interprets and reacts to tasks, resulting in different patterns of cognition, affect and behavior.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Grammaire formelleUne grammaire formelle est un formalisme permettant de définir une syntaxe et donc un langage formel, c'est-à-dire un ensemble de mots admissibles sur un alphabet donné. La notion de grammaire formelle est particulièrement utilisée en programmation logique, compilation (analyse syntaxique), en théorie de la calculabilité et dans le traitement des langues naturelles (tout particulièrement en ce qui concerne leur morphologie et leur syntaxe).
Science formelleLes sciences formelles (ou sciences logico-formelles) explorent déductivement, selon des règles de formation et de démonstration, des systèmes axiomatiques. Les sciences formelles regroupent les mathématiques, la logique et l'informatique théorique. L'algèbre est la branche des mathématiques qui étudie les structures algébriques, indépendamment de la notion de limite (rattachée à l'analyse) et de la notion de représentation graphique (rattachée à la géométrie).
Planification stratégiqueLa planification stratégique est le processus de développement de stratégies afin d'atteindre un objectif fixé. Pour Peter Drucker, la planification stratégique (strategic planning) est le processus continu de réalisation des décisions entrepreneuriales (comportant une prise de risque) et en fonction de la plus grande connaissance de leur évolution future, l'organisation systématique des efforts nécessaires pour mettre en place ces décisions et mesurer le résultat de ces décisions par rapport aux prévisions grâce à un retour d'expérience organisé et systématique.