Procedural knowledgeProcedural knowledge (also known as knowing-how, and sometimes referred to as practical knowledge, imperative knowledge, or performative knowledge) is the knowledge exercised in the performance of some task. Unlike descriptive knowledge (also known as declarative knowledge, propositional knowledge or "knowing-that"), which involves knowledge of specific facts or propositions (e.g. "I know that snow is white"), procedural knowledge involves one's ability to do something (e.g. "I know how to change a flat tire").
Théorie MLa théorie M est une théorie physique devant unifier les différentes versions de la théorie des supercordes. L'existence de cette théorie fut conjecturée par Edward Witten en 1995, lors d'un colloque sur la théorie des cordes à l'Université de Californie du Sud. Cette annonce engendra un tourbillon de nouvelles recherches, qu'on a appelé la . Selon Witten le M de théorie M peut signifier magie, mystère ou membrane au choix, et le véritable sens ne s'imposera que quand la théorie sera formulée définitivement.
Livre (document)Un livre est un document écrit formant unité et conçu comme tel, composé de pages reliées les unes aux autres. Il a pour fonction d'être un support de l'écriture, permettant la diffusion et la conservation de textes de nature variée. Sur le plan matériel, un livre est un volume de pages reliées, présentant un ou des textes sous une page de titre commune. Sa forme induit une organisation linéaire (pagination, chapitres, etc.). Un livre comporte généralement des outils favorisant l'accès à son contenu : table des matières, sommaire, index.
Enseignement des mathématiquesL'enseignement des mathématiques vise à transmettre des compétences en mathématiques, le plus souvent en expliquant et en appliquant des méthodes scientifiques. Cet enseignement a fait l'objet de nombreux débats dans les sociétés modernes. vignette|Calcul mental. Dans l'école populaire de S. A. Ratchinski, peinture de Nikolaï Bogdanov-Belski, Russie, 1895. vignette|Garçon devant un tableau noir, Guinée-Bissau, 1974. Les mathématiques élémentaires font partie des programmes scolaires depuis les plus anciennes civilisations, dont la Grèce antique, l'Empire romain et l'Égypte ancienne.
Histoire des mathématiquesL’histoire des mathématiques s'étend sur plusieurs millénaires et dans de nombreuses régions du globe allant de la Chine à l’Amérique centrale. Jusqu'au , le développement des connaissances mathématiques s’effectue essentiellement de façon cloisonnée dans divers endroits du globe. À partir du et surtout au , le foisonnement des travaux de recherche et la mondialisation des connaissances mènent plutôt à un découpage de cette histoire en fonction des domaines mathématiques.
Mathématiques puresvignette|Formules mathématiques Les mathématiques pures (ou mathématiques fondamentales) regroupent les activités de recherche en mathématiques motivée par des raisons autres que celles de l'application pratique. Les mathématiques pures reposent sur un ensemble d'axiomes et sur un système logique, détachés de l'expérience et de la réalité. Il n'est cependant pas rare que des théories développées sans objectif pratique soient utilisées plus tard pour certaines applications, comme la géométrie riemannienne pour la relativité générale.
Recherche fondamentaleLa recherche fondamentale consiste en des travaux expérimentaux ou théoriques entrepris principalement en vue d'acquérir de nouvelles connaissances sur les fondements des phénomènes et des faits observables, sans envisager une application ou une utilisation particulière. En somme, elle « crée » de la connaissance et l’explique. Les résultats des recherches fondamentales donnent en général lieu à des publications dans des revues scientifiques. La recherche fondamentale peut être de deux types.
Serre spectral sequenceIn mathematics, the Serre spectral sequence (sometimes Leray–Serre spectral sequence to acknowledge earlier work of Jean Leray in the Leray spectral sequence) is an important tool in algebraic topology. It expresses, in the language of homological algebra, the singular (co)homology of the total space X of a (Serre) fibration in terms of the (co)homology of the base space B and the fiber F. The result is due to Jean-Pierre Serre in his doctoral dissertation. Let be a Serre fibration of topological spaces, and let F be the (path-connected) fiber.
Médaille FieldsLa médaille Fields est la plus prestigieuse récompense en mathématiques avec le prix Abel. Elle est considérée comme équivalente à un prix Nobel inexistant pour cette discipline. Elle est attribuée tous les quatre ans depuis 1936 au cours du congrès international des mathématiciens à quatre mathématiciens au plus, tous de moins de . Les lauréats reçoivent chacun une médaille et . John Charles Fields, mathématicien canadien, propose la création de cette médaille en 1923 lors d'une réunion internationale à Toronto.
Book collectingBook collecting is the collecting of books, including seeking, locating, acquiring, organizing, cataloging, displaying, storing, and maintaining whatever books are of interest to a given collector. The love of books is bibliophilia, and someone who loves to read, admire, and a person who collects books is often called a bibliophile but can also be known as an bibliolater, meaning being overly devoted to books, or a bookman which is another term for a person who has a love of books.