Mean percentage errorIn statistics, the mean percentage error (MPE) is the computed average of percentage errors by which forecasts of a model differ from actual values of the quantity being forecast. The formula for the mean percentage error is: where at is the actual value of the quantity being forecast, ft is the forecast, and n is the number of different times for which the variable is forecast. Because actual rather than absolute values of the forecast errors are used in the formula, positive and negative forecast errors can offset each other; as a result the formula can be used as a measure of the bias in the forecasts.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Median absolute deviationIn statistics, the median absolute deviation (MAD) is a robust measure of the variability of a univariate sample of quantitative data. It can also refer to the population parameter that is estimated by the MAD calculated from a sample. For a univariate data set X1, X2, ..., Xn, the MAD is defined as the median of the absolute deviations from the data's median : that is, starting with the residuals (deviations) from the data's median, the MAD is the median of their absolute values. Consider the data (1, 1, 2, 2, 4, 6, 9).
Neurobiological effects of physical exerciseThe neurobiological effects of physical exercise are numerous and involve a wide range of interrelated effects on brain structure, brain function, and cognition. A large body of research in humans has demonstrated that consistent aerobic exercise (e.g., 30 minutes every day) induces persistent improvements in certain cognitive functions, healthy alterations in gene expression in the brain, and beneficial forms of neuroplasticity and behavioral plasticity; some of these long-term effects include: increased neuron growth, increased neurological activity (e.
Écart moyenEn statistique, et en probabilités, l'écart moyen est une mesure de la dispersion autour de la moyenne. Il se calcule ainsi : dans le cas d'une série discrète non triée, écart moyen = ; dans le cas d'une série discrète regroupée, écart moyen = ; dans le cas d'une série continue, écart moyen = . Pour une variable aléatoire réelle , l'écart moyen est la moyenne des écarts (absolus) à la moyenne : . On précise parfois écart moyen absolu, pour le différentier de l'écart moyen algébrique , lequel est nul.
Tau de KendallEn statistique, le tau de Kendall (ou de Kendall) est une statistique qui mesure l'association entre deux variables. Plus spécifiquement, le tau de Kendall mesure la corrélation de rang entre deux variables. Elle est nommée ainsi en hommage à Maurice Kendall qui en a développé l'idée dans un article de 1938 bien que Gustav Fechner ait proposé une idée similaire appliquée aux séries temporelles dès 1897. Soit un ensemble d'observations des variables jointes et tel que les valeurs des et sont uniques.
Intraclass correlationIn statistics, the intraclass correlation, or the intraclass correlation coefficient (ICC), is a descriptive statistic that can be used when quantitative measurements are made on units that are organized into groups. It describes how strongly units in the same group resemble each other. While it is viewed as a type of correlation, unlike most other correlation measures, it operates on data structured as groups rather than data structured as paired observations.
Probable errorIn statistics, probable error defines the half-range of an interval about a central point for the distribution, such that half of the values from the distribution will lie within the interval and half outside. Thus for a symmetric distribution it is equivalent to half the interquartile range, or the median absolute deviation. One such use of the term probable error in this sense is as the name for the scale parameter of the Cauchy distribution, which does not have a standard deviation.
Coefficient of multiple correlationIn statistics, the coefficient of multiple correlation is a measure of how well a given variable can be predicted using a linear function of a set of other variables. It is the correlation between the variable's values and the best predictions that can be computed linearly from the predictive variables. The coefficient of multiple correlation takes values between 0 and 1.
Condition physiquePhysical fitness is a state of health and well-being and, more specifically, the ability to perform aspects of sports, occupations and daily activities. Physical fitness is generally achieved through proper nutrition, moderate-vigorous physical exercise, and sufficient rest along with a formal recovery plan. Before the Industrial Revolution, fitness was defined as the capacity to carry out the day's activities without undue fatigue or lethargy.