Single-precision floating-point formatSingle-precision floating-point format (sometimes called FP32 or float32) is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 231 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2−23) × 2127 ≈ 3.
Théorème du point fixe de LefschetzEn mathématiques, le théorème du point fixe de Lefschetz est une formule qui compte le nombre de points fixes d'une application continue d'un espace compact X dans lui-même en utilisant les traces des endomorphismes qu'elle induit sur l'homologie de X. Il est nommé d'après Solomon Lefschetz qui l'a démontré en 1926. Chaque point fixe est compté avec sa multiplicité. Une version faible du théorème suffit à démontrer qu'une application qui n'a aucun point fixe doit vérifier certaines propriétés particulières (comme une rotation du cercle).
Floating-point error mitigationFloating-point error mitigation is the minimization of errors caused by the fact that real numbers cannot, in general, be accurately represented in a fixed space. By definition, floating-point error cannot be eliminated, and, at best, can only be managed. Huberto M. Sierra noted in his 1956 patent "Floating Decimal Point Arithmetic Control Means for Calculator": Thus under some conditions, the major portion of the significant data digits may lie beyond the capacity of the registers.
Théorème du point fixe de BrouwerEn mathématiques, et plus précisément en topologie algébrique, le théorème du point fixe de Brouwer fait partie de la grande famille des théorèmes de point fixe, qui énoncent que si une fonction continue f vérifie certaines propriétés, alors il existe un point x0 tel que f(x0) = x0. La forme la plus simple du théorème de Brouwer prend comme hypothèse que la fonction f est définie sur un intervalle fermé borné non vide I et à valeurs dans I. Sous une forme plus générale, la fonction est définie sur un convexe compact K d'un espace euclidien et à valeurs dans K.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Unité de calcul en virgule flottantethumbnail|Le Motorola 68882, un coprocesseur arithmétique. Une unité de calcul en virgule flottante (UVF, en anglais floating-point unit, FPU) est une partie d'un processeur, spécialement conçue pour effectuer des opérations sur des nombres à virgule flottante. Tous les processeurs incorporent au moins l'addition, la soustraction et la multiplication. L'opération fused multiply–add (multiplication suivie d'une addition, avec un seul arrondi), requise par la norme IEEE 754 dans sa révision de 2008, est de plus en plus implémentée.
Fixed-point theorems in infinite-dimensional spacesIn mathematics, a number of fixed-point theorems in infinite-dimensional spaces generalise the Brouwer fixed-point theorem. They have applications, for example, to the proof of existence theorems for partial differential equations. The first result in the field was the Schauder fixed-point theorem, proved in 1930 by Juliusz Schauder (a previous result in a different vein, the Banach fixed-point theorem for contraction mappings in complete metric spaces was proved in 1922). Quite a number of further results followed.
IEEE 754En informatique, l’IEEE 754 est une norme sur l'arithmétique à virgule flottante mise au point par le Institute of Electrical and Electronics Engineers. Elle est la norme la plus employée actuellement pour le calcul des nombres à virgule flottante avec les CPU et les FPU. La norme définit les formats de représentation des nombres à virgule flottante (signe, mantisse, exposant, nombres dénormalisés) et valeurs spéciales (infinis et NaN), en même temps qu’un ensemble d’opérations sur les nombres flottants.
Gamme dynamiqueLa gamme dynamique, ou plage dynamique ou simplement dynamique est le rapport de la plus grande à la plus petite valeur d'une grandeur. Cette grandeur peut caractériser l'intensité d'un son ou d'une lumière. Elle est mesurée par une valeur logarithmique en base 10 (décibels) ou en base 2 (bits ou « diaphs »). En photographie, le terme décrit le rapport entre l'intensité lumineuse la plus élevée et l'intensité la plus faible qu'un appareil photographique peut capturer.
Imagerie à grande gamme dynamiqueL'imagerie à grande gamme dynamique (ou imagerie large-gamme) (high-dynamic-range imaging ou HDRI) regroupe un ensemble de techniques numériques permettant de présenter une image fixe ou animée d'une scène qui présente, dans ses diverses parties, des niveaux très différents de luminosité. Une se constitue à partir de pixels auxquels est associé un triplet de valeurs qui en indique la luminosité et la couleur. Le rendu à grande dynamique concerne des fichiers d'origine où les pixels ont plus de valeurs possibles que les écrans ou imprimantes du rendu.