Fixed-point theorems in infinite-dimensional spaces
Résumé
In mathematics, a number of fixed-point theorems in infinite-dimensional spaces generalise the Brouwer fixed-point theorem. They have applications, for example, to the proof of existence theorems for partial differential equations.
The first result in the field was the Schauder fixed-point theorem, proved in 1930 by Juliusz Schauder (a previous result in a different vein, the Banach fixed-point theorem for contraction mappings in complete metric spaces was proved in 1922). Quite a number of further results followed. One way in which fixed-point theorems of this kind have had a larger influence on mathematics as a whole has been that one approach is to try to carry over methods of algebraic topology, first proved for finite simplicial complexes, to spaces of infinite dimension. For example, the research of Jean Leray who founded sheaf theory came out of efforts to extend Schauder's work.
Schauder fixed-point theorem: Let C be a nonempty closed convex subset of a Banach space V. If f : C → C is continuous with a compact image, then f has a fixed point.
Tikhonov (Tychonoff) fixed-point theorem: Let V be a locally convex topological vector space. For any nonempty compact convex set X in V, any continuous function f : X → X has a fixed point.
Browder fixed-point theorem: Let K be a nonempty closed bounded convex set in a uniformly convex Banach space. Then any non-expansive function f : K → K has a fixed point. (A function is called non-expansive if for each and .)
Other results include the Markov–Kakutani fixed-point theorem (1936-1938) and the Ryll-Nardzewski fixed-point theorem (1967) for continuous affine self-mappings of compact convex sets, as well as the Earle–Hamilton fixed-point theorem (1968) for holomorphic self-mappings of open domains.
Kakutani fixed-point theorem: Every correspondence that maps a compact convex subset of a locally convex space into itself with a closed graph and convex nonempty images has a fixed point.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En analyse, un théorème du point fixe donne des conditions suffisantes d’existence d’un point fixe pour une fonction ou une famille de fonctions. Plus précisément, étant donné un ensemble E et une famille de fonctions f définies sur E et à valeurs dans E, ces théorèmes permettent de justifier qu’il existe un élément x de E tel que pour toutes les fonctions considérées on ait . Certains de ces théorèmes fournissent même un processus itératif permettant d’approcher un tel point fixe.
En mathématiques, et plus précisément en topologie algébrique, le théorème du point fixe de Brouwer fait partie de la grande famille des théorèmes de point fixe, qui énoncent que si une fonction continue f vérifie certaines propriétés, alors il existe un point x0 tel que f(x0) = x0. La forme la plus simple du théorème de Brouwer prend comme hypothèse que la fonction f est définie sur un intervalle fermé borné non vide I et à valeurs dans I. Sous une forme plus générale, la fonction est définie sur un convexe compact K d'un espace euclidien et à valeurs dans K.
In this thesis, we unveil a third design path to manipulate elastic waves within architected media, distinct from the traditional phononic crystal and locally-resonant metamaterial concepts. The core innovation lies in the concept of nonlocal resonances, d ...
We introduce locally convex vector spaces. As an example we treat the space of test functions and the space of distributions. In the second part of the course, we discuss differential calculus in Bana
Explore l'analyse numérique des équations non linéaires, en mettant l'accent sur les critères de convergence et les méthodes comme la bisection et l'itération à point fixe.
We show the Jordan property for regional fundamental groups of klt singularities of fixed dimension. Furthermore, we prove the existence of effective simultaneous index 1 covers for n-dimensional klt singularities. We give an application to the study of lo ...
2022
, ,
We use numerical bootstrap techniques to study correlation functions of traceless sym-metric tensors of O(N) with two indices ti j. We obtain upper bounds on operator dimen-sions for all the relevant representations and several values of N. We discover sev ...