We determine all endotrivial modules in prime characteristic p, for a finite group having a cyclic Sylow p-subgroup. In other words, we describe completely the group of endotrivial modules in that case.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques et plus précisément en théorie des groupes, un groupe cyclique est un groupe qui est à la fois fini et monogène, c'est-à-dire qu'il existe un élément a du groupe tel que tout élément du groupe puisse s'exprimer sous forme d'un multiple de a (en notation additive, ou comme puissance en notation multiplicative) ; cet élément a est appelé générateur du groupe. Il n'existe, à isomorphisme près, pour tout entier n > 0, qu'un seul groupe cyclique d'ordre n : le groupe quotient Z/nZ — également noté Z ou C — de Z par le sous-groupe des multiples de n.
vignette|Un exemple de groupe fini est le groupe des transformations laissant invariant un flocon de neige (par exemple la symétrie par rapport à l'axe horizontal). En mathématiques, un groupe fini est un groupe constitué d'un nombre fini d'éléments. Soit G un groupe. On note en général sa loi multiplicativement et on désigne alors son élément neutre par 1. Toutefois, si G est abélien, la loi est souvent notée additivement et son élément neutre est alors désigné par 0 ; ce n'est cependant pas une règle générale : par exemple, le groupe multiplicatif d'un corps commutatif est noté multiplicativement, bien qu'il soit abélien.
En théorie des groupes finis, les théorèmes de Sylow forment une réciproque partielle du théorème de Lagrange, d'après lequel, si H est sous-groupe d'un groupe fini G, alors l'ordre de H divise l'ordre de G. Ces théorèmes garantissent, pour certains diviseurs de l'ordre de G, l'existence de sous-groupes d'ordre égal à ces diviseurs, et donnent une information sur le nombre de ces sous-groupes. Ces théorèmes portent le nom du mathématicien norvégien Ludwig Sylow, qui les démontra en 1872.
In this text, we will show the existence of lattice packings in a family of dimensions by employing division algebras. This construction is a generalization of Venkatesh's lattice packing result Venkatesh (Int Math Res Notices 2013(7): 1628-1642, 2013). In ...
We show that for a large class C of finitely generated groups of orientation preserving homeomorphisms of the real line, the following holds: Given a group G of rank k in C, there is a sequence of k-markings (G,S-n), n is an element of N whose limit in the ...
We study actions of groups by orientation preserving homeomorphisms on R (or an interval) that are minimal, have solvable germs at +/-infinity and contain a pair of elements of a certain dynamical type. We call such actions coherent. We establish that such ...