Surface functionalization of 1D materials such as silicon nanowires is a critical preparation technology for biochemical sensing. However, existing nonselective functionalization techniques result in nonlocal binding and contamination, with potential devic ...
Our understanding of quantum materials is commonly based on precise determinations of their electronic spectrum by spectroscopic means, most notably angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy. Both require atomicall ...
Advancing quantum technologies depends on the precise control of individual quantum systems, the so-called qubits, and the exploitation of their quantum properties. Nowadays, expanding the number of qubits to be entangled is at the core of the developments ...
Sensing and imaging of light in the shortwave infrared (SWIR) range is increasingly used in various fields, including bio-imaging, remote sensing, and semiconductor process control. SWIR-sensitive organic photodetectors (OPDs) are promising because organic ...
Atomic force microscopy (AFM) is a widely used imaging tool for obtaining a variety of information for a range of samples. Although it was initially intended to serve as a method of observing very flat solid surfaces, its use expanded into several other fi ...
Recombination at metal/semiconductor interfaces represents the main limitation in mainstream c-Si solar cells, primarily based on the passivated emitter and rear cell (PERC) concept. Full-area passivating contacts based on SiOx/poly-Si stacks are a candida ...
Since the dawn of humanity, human beings seeked to light their surroundings for their well-being, security and development. The efficiency of ancient lighting devices, e.g. oil lamps or candles, was in the order of 0.03-0.04% and jumped to 0.4-0.6% with th ...
The escalating energy demand and the imperative necessity to reduce the carbon footprint require transformative approaches to energy conversion. Materials chemistry plays a pivotal role in addressing these global challenges by developing novel materials fo ...
Transient electronics have emerged as a new category of devices that can degrade after their functional lifetime, offering tremendous potential as disposable sensors, actuators, wearables, and implants. Additive manufacturing methods represent a promising ...
Single-layer graphene, hosting a high density of functionalized molecular-sieving atom-thick pores, is considered to be an excellent material for gas separation membranes. These functionalized atom-thick pores enable the shortest transport pathway across t ...