Lecture

Homotopy Category and Derived Functors

In course
DEMO: enim occaecat officia
Irure sint sunt dolore quis. Voluptate consectetur sit officia minim laboris eiusmod veniam exercitation reprehenderit velit mollit et. Velit anim mollit adipisicing voluptate consequat voluptate dolore adipisicing. Mollit occaecat minim ad fugiat et pariatur incididunt fugiat ut qui consequat commodo ea. Qui laboris sint eu magna consectetur. Elit cillum dolor excepteur laborum nostrud excepteur dolor mollit. Dolore cillum aute consequat velit exercitation ad amet occaecat consequat proident duis sit sunt eiusmod.
Login to see this section
Description

This lecture delves into the analysis of the homotopy category of chain complexes over a field, exploring the relation between quasi-isomorphisms and chain homotopy equivalences. The instructor briefly discusses the implications of working over an arbitrary commutative ring instead of a field, providing explicit descriptions of various concepts such as HoM, H₂M, and Ob HoM. The lecture concludes with an in-depth explanation of the relationship between quasi-isomorphisms and chain homotopy equivalences, emphasizing the importance of bifibrant objects in the context of the homotopy category.

Instructor
sit consequat
Ad et excepteur aliqua eiusmod voluptate veniam eiusmod ea laboris adipisicing minim enim minim irure. Et velit consequat id dolor tempor consectetur aliqua eiusmod Lorem Lorem culpa. Labore est proident sit ut culpa aliqua ad consequat velit. Consectetur occaecat dolore do ut laboris. Adipisicing ipsum ex deserunt aliqua anim ipsum esse est. Est ipsum officia irure ad minim adipisicing ad amet culpa duis eiusmod.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.