Publication

Structure-preserving eigenvalue solvers for robust stability and controllability estimates

Daniel Kressner
2006
Conference paper
Abstract

Structured eigenvalue problems feature a prominent role in many algorithms for the computation of robust measures for the stability or controllability of a linear control system. Structures that typically arise are Hamiltonian, skew-Hamiltonian, and symplectic. The use of eigenvalue solvers that preserve such structures can enhance the reliability and efficiency of algorithms for robust stability and controllability measures. This aspect is the focus of the present work, which summarizes and extends existing structure-preserving eigenvalue solvers. Also, a new method for estimating the distance to uncontrollability in a cheap manner is presented. The structured eigenvalue algorithms described in this paper are intented to become part of HAPACK, a software package for solving structured eigenvalue problems and applications.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (27)
Eigenvalues and eigenvectors
In linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.
Eigendecomposition of a matrix
In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem. Eigenvalue, eigenvector and eigenspace A (nonzero) vector v of dimension N is an eigenvector of a square N × N matrix A if it satisfies a linear equation of the form for some scalar λ.
Linear system
In systems theory, a linear system is a mathematical model of a system based on the use of a linear operator. Linear systems typically exhibit features and properties that are much simpler than the nonlinear case. As a mathematical abstraction or idealization, linear systems find important applications in automatic control theory, signal processing, and telecommunications. For example, the propagation medium for wireless communication systems can often be modeled by linear systems.
Show more
Related publications (36)

Frequency domain data-driven robust and optimal control

Philippe Louis Schuchert

The goal of this thesis is to propose pragmatic solutions to real challenges faced in the industry. The scope of this thesis encompasses two subjects: frequency-based structured controller synthesis for linear time-invariant (LTI) systems on one side, and ...
EPFL2024

Singular quadratic eigenvalue problems: linearization and weak condition numbers

Daniel Kressner, Ivana Sain Glibic

The numerical solution of singular eigenvalue problems is complicated by the fact that small perturbations of the coefficients may have an arbitrarily bad effect on eigenvalue accuracy. However, it has been known for a long time that such perturbations are ...
SPRINGER2023

Second-order adjoint-based sensitivity for hydrodynamic stability and control

Edouard Boujo

Adjoint-based sensitivity analysis is routinely used today to assess efficiently the effect of open-loop control on the linear stability properties of unstable flows. Sensitivity maps identify regions where small-amplitude control is the most effective, i. ...
CAMBRIDGE UNIV PRESS2021
Show more
Related MOOCs (9)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.