Publication

Remarks on Schur's conjecture

János Pach, Filip Moric
2015
Journal paper
Abstract

Let P be a set of n > d points in for d >= 2. It was conjectured by Zvi Schur that the maximum number of (d-1)-dimensional regular simplices of edge length diam(P), whose every vertex belongs to P, is n. We prove this statement under the condition that any two of the simplices share at least d 2 vertices. It is left as an open question to decide whether this condition is always satisfied. We also establish upper bounds on the number of all 2- and 3-dimensional simplices induced by a set P subset of R-3 of n points which satisfy the condition that the lengths of their sides belong to the set of k largest distances determined by P. (C) 2014 Elsevier B.V. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.