Publication

Solving Stochastic AC Power Flow via Polynomial Chaos Expansion

Timm Faulwasser
2016
Conference paper
Abstract

The present contribution demonstrates the applicability of polynomial chaos expansion to stochastic (optimal) AC power flow problems that arise in the operation of power grids. For rectangular power flow, polynomial chaos expansion together with Galerkin projection yields a deterministic reformulation of the stochastic power flow problem that is solved numerically in a single run. From its solution, approximations of the true posterior probability density functions are obtained. The presented approach does not require linearization. Furthermore, the IEEE 14 bus serves as an example to demonstrate that the proposed approach yields accurate approximations to the probability density functions for low orders of polynomial bases, and that it is computationally more efficient than Monte Carlo sampling.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.