Publication

On Polynomial Algorithms for Normalizing Formulas

Viktor Kuncak, Simon Guilloud, Mario Bucev
2022
Report or working paper
Abstract

We propose a new approach for normalization and simplification of logical formulas. Our approach is based on algorithms for lattice-like structures. Specifically, we present two efficient algorithms for computing a normal form and deciding the word problem for two subtheories of Boolean algebra, giving a sound procedure for propositional logical equivalence that is incomplete in general but complete with respect to a subset of Boolean algebra axioms. We first show a new algorithm to produce a normal form for expressions in the theory of ortholattices (OL) in time O(n^2). We also consider an algorithm, recently presented but never evaluated in practice, producing a normal form for a slightly weaker theory, orthocomplemented bisemilattices (OCBSL), in time O(n log(n)^2). For both algorithms, we present an implementation and show efficiency in two domains. First, we evaluate the algorithms on large propositional expressions, specifically combinatorial circuits from a benchmark suite, as well as on large random formulas. Second, we implement and evaluate the algorithms in the Stainless verifier, a tool for verifying the correctness of Scala programs. We used these algorithms as a basis for a new formula simplifier, which is applied before valid verification conditions are saved into a persistent cache. The results show that normalization substantially increases cache hit ratio in large benchmarks.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.