Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We present LISA, a proof system and proof assistant for constructing proofs in schematic first-order logic and axiomatic set theory. The logical kernel of the system is a proof checker for first-order logic with equality and schematic predicate and function symbols. It implements polynomial-time proof checking and uses the axioms of ortholattices (which implies the irrelevance of the order of conjuncts and disjuncts and additional propositional laws). The kernel supports the notion of theorems (whose proofs are not expanded), as well as definitions of predicate symbols and objects whose unique existence is proven. A domain-specific language enables construction of proofs and development of proof tactics with user-friendly tools and presentation, while remaining within the general-purpose language, Scala. We describe the LISA proof system and illustrate the flavour and the level of abstraction of proofs written in LISA. This includes a proof-generating tactic for propositional tautologies, leveraging the ortholattice properties to reduce the size of proofs. We also present early formalization of set theory in LISA, including Cantor's theorem.
,
We study the proof theory and algorithms for orthologic, a logical system based on ortholattices, which have shown practical relevance in simplification and normalization of verification conditions. Ortholattices weaken Boolean algebras while having po ...
,