In probability theory and statistics, the empirical probability, relative frequency, or experimental probability of an event is the ratio of the number of outcomes in which a specified event occurs to the total number of trials, i.e., by means not of a theoretical sample space but of an actual experiment. More generally, empirical probability estimates probabilities from experience and observation. Given an event A in a sample space, the relative frequency of A is the ratio \tfrac m n, m being the number of outcomes in which the event A occurs, and n being the total number of outcomes of the experiment. In statistical terms, the empirical probability is an estimator or estimate of a probability. In simple cases, where the result of a trial only determines whether or not the specified event has occurred, modelling using a binomial distribution might be appropriate and then the empirical estimate is the maximum likelihood estimate. It is the Bayesian estimate for the same case if certain assumptions are made for the prior distribution of the probability. If a trial yields more information, the empirical probability can be improved on by adopting further assumptions in the form of a statistical model: if such a model is fitted, it can be used to derive an estimate of the probability of the specified event An advantage of estimating probabilities using empirical probabilities is that this procedure is relatively free of assumptions. For example, consider estimating the probability among a population of men that they satisfy two conditions: that they are over 6 feet in height. that they prefer strawberry jam to raspberry jam. A direct estimate could be found by counting the number of men who satisfy both conditions to give the empirical probability of the combined condition. An alternative estimate could be found by multiplying the proportion of men who are over 6 feet in height with the proportion of men who prefer strawberry jam to raspberry jam, but this estimate relies on the assumption that the two conditions are statistically independent.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (21)
MATH-232: Probability and statistics (for IC)
A basic course in probability and statistics
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-131: Probability and statistics
Le cours présente les notions de base de la théorie des probabilités et de l'inférence statistique. L'accent est mis sur les concepts principaux ainsi que les méthodes les plus utilisées.
Show more
Related lectures (45)
The Law of Large Numbers: Proof and Applications
Explores the proof and applications of the law of large numbers, emphasizing convergence of the empirical distribution.
Genetic Inheritance: Phenotype and Probability
Explores genetic inheritance, focusing on phenotype expression and probability calculations in red hair inheritance.
Statistics: Laws of Large Numbers
Explores fundamental theorems in statistics, including laws of large numbers and the central limit theorem.
Show more
Related publications (128)
Related concepts (5)
Outcome (probability)
In probability theory, an outcome is a possible result of an experiment or trial. Each possible outcome of a particular experiment is unique, and different outcomes are mutually exclusive (only one outcome will occur on each trial of the experiment). All of the possible outcomes of an experiment form the elements of a sample space. For the experiment where we flip a coin twice, the four possible outcomes that make up our sample space are (H, T), (T, H), (T, T) and (H, H), where "H" represents a "heads", and "T" represents a "tails".
Frequency (statistics)
In statistics, the frequency or absolute frequency of an event is the number of times the observation has occurred/recorded in an experiment or study. These frequencies are often depicted graphically or in tabular form. The cumulative frequency is the total of the absolute frequencies of all events at or below a certain point in an ordered list of events. The relative frequency (or empirical probability) of an event is the absolute frequency normalized by the total number of events: The values of for all events can be plotted to produce a frequency distribution.
Quantile
In statistics and probability, quantiles are cut points dividing the range of a probability distribution into continuous intervals with equal probabilities, or dividing the observations in a sample in the same way. There is one fewer quantile than the number of groups created. Common quantiles have special names, such as quartiles (four groups), deciles (ten groups), and percentiles (100 groups). The groups created are termed halves, thirds, quarters, etc.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.