Electron-beam lithography (often abbreviated as e-beam lithography, EBL) is the practice of scanning a focused beam of electrons to draw custom shapes on a surface covered with an electron-sensitive film called a resist (exposing). The electron beam changes the solubility of the resist, enabling selective removal of either the exposed or non-exposed regions of the resist by immersing it in a solvent (developing). The purpose, as with photolithography, is to create very small structures in the resist that can subsequently be transferred to the substrate material, often by etching. The primary advantage of electron-beam lithography is that it can draw custom patterns (direct-write) with sub-10 nm resolution. This form of maskless lithography has high resolution but low throughput, limiting its usage to photomask fabrication, low-volume production of semiconductor devices, and research and development. Electron-beam lithography systems used in commercial applications are dedicated e-beam writing systems that are very expensive (> US1M).Forresearchapplications,itisverycommontoconvertanelectronmicroscopeintoanelectronbeamlithographysystemusingrelativelylowcostaccessories(<US1M). For research applications, it is very common to convert an electron microscope into an electron beam lithography system using relatively low cost accessories (< US100K). Such converted systems have produced linewidths of ~20 nm since at least 1990, while current dedicated systems have produced linewidths on the order of 10 nm or smaller. Electron-beam lithography systems can be classified according to both beam shape and beam deflection strategy. Older systems used Gaussian-shaped beams that scanned these beams in a raster fashion. Newer systems use shaped beams that can be deflected to various positions in the writing field (also known as vector scan). Lower-resolution systems can use thermionic sources (cathode), which are usually formed from lanthanum hexaboride. However, systems with higher-resolution requirements need to use field electron emission sources, such as heated W/ZrO2 for lower energy spread and enhanced brightness.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (29)
MICRO-530: Nanotechnology
This course gives the basics for understanding nanotechnology from an engineer's perspective: physical background, materials aspects and scaling laws, fabrication and imaging of nanoscale devices.
MSE-352: Introduction to microscopy + Laboratory work
Ce cours d'introduction à la microscopie a pour but de donner un apperçu des différentes techniques d'analyse de la microstructure et de la composition des matériaux, en particulier celles liées aux m
CH-110: Advanced general chemistry I
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
Show more
Related lectures (197)
Electron Microscopy Components
Covers electron microscope components, vacuum systems, aberrations, detectors, and specimen holders.
Advanced Nanomanufacturing: Lithography & Self-Assembly
Delves into advanced nanomanufacturing techniques, including lithography and block copolymer self-assembly for precise device fabrication.
SEM Basics: Introduction to Electron Microscopy
Introduces the basics of scanning electron microscopy, covering electron sources, lenses, vacuum system, and detectors.
Show more
Related publications (446)

Polydopamine-coated photoautotrophic bacteria for improving extracellular electron transfer in living photovoltaics

Ardemis Anoush Boghossian, Melania Reggente, Mohammed Mouhib, Hanxuan Wang, Charlotte Elisabeth Marie Roullier, Fabian Fischer, Patricia Brandl

Living photovoltaics are microbial electrochemical devices that use whole cell–electrode interactions to convert solar energy to electricity. The bottleneck in these technologies is the limited electron transfer between the microbe and the electrode surfac ...
2024

Plasmonically enhanced molecular junctions for investigation of atomic-scale fluctuations in self-assembled monolayers

Sakthi Priya Amirtharaj

Molecular junctions represent a fascinating frontier in the realm of nanotechnology and are one of thesmallest optoelectronic devices possible, consisting of individual molecules or a group of moleculesthat serve as the active element sandwiched between co ...
EPFL2024

Microsecond Time-Resolved Cryo-Electron Microscopy

Oliver Florian Harder

Recently, single-particle cryo-electron microscopy emerged as a technique capable of determining protein structures at near-atomic resolution and resolving protein dynamics with a temporal resolution ranging from second to milliseconds. This thesis describ ...
EPFL2024
Show more
Related concepts (9)
Extreme ultraviolet lithography
Extreme ultraviolet lithography (also known as EUV or EUVL) is an optical lithography technology used in semiconductor device fabrication to make integrated circuits (ICs). It uses extreme ultraviolet (EUV) wavelengths near 13.5 nm, using a laser-pulsed tin (Sn) droplet plasma (Sn ions in the ionic states from Sn IX to Sn XIV give photon emission spectral peaks around 13.5 nm from 4p64dn - 4p54dn+1 + 4dn-14f ionic state transitions.), to produce a pattern by using a reflective photomask to expose a substrate covered by photoresist.
Photomask
A photomask is an opaque plate with transparent areas that allow light to shine through in a defined pattern. Photomasks are commonly used in photolithography for the production of integrated circuits (ICs or "chips") to produce a pattern on a thin wafer of material (usually silicon). Several masks are used in turn, each one reproducing a layer of the completed design, and together known as a mask set. For IC production in the 1960s and early 1970s, an opaque rubylith film laminated onto a transparent mylar sheet was used.
Photoresist
A photoresist (also known simply as a resist) is a light-sensitive material used in several processes, such as photolithography and photoengraving, to form a patterned coating on a surface. This process is crucial in the electronics industry. The process begins by coating a substrate with a light-sensitive organic material. A patterned mask is then applied to the surface to block light, so that only unmasked regions of the material will be exposed to light. A solvent, called a developer, is then applied to the surface.
Show more
Related MOOCs (16)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.