Zero waste is a set of principles focused on waste prevention that encourages redesigning resource life cycles so that all products are repurposed (i.e. “up-cycled”) and/or reused. The goal of the movement is to avoid sending trash to landfills, incinerators, oceans, or any other part of the environment. Currently 9% of global plastic is recycled. In a zero waste system, all materials are reused until the optimum level of consumption is reached.
Zero waste refers to waste prevention as opposed to end-of-pipe waste management. It is a “whole systems” approach that aims for a massive change in the way materials flow through society, resulting in no waste. Zero waste encompasses more than eliminating waste through reducing, reusing, and recycling. It focuses on restructuring distribution and production systems to reduce waste. Zero waste provides guidelines for continually working towards eliminating waste.
According to the Zero Waste International Alliance (ZWIA), Zero Waster is the conservation of all resources by means of responsible production, consumption, reuse and, recovery of all products, packaging, and materials, without burning them and without discharges to land, water, or air that threaten the environment or human health.
Advocates expect that government regulation is needed to influence industrial choices over product and packaging design, manufacturing processes, and material selection.
Advocates say eliminating waste decreases pollution and can also reduce costs due to the reduced need for raw materials.
The cradle-to-grave is a linear material model that begins with resource extraction, moves to product manufacturing, and ends with a "grave" or landfill where the product is disposed of. Cradle-to-grave is in direct contrast to cradle-to-cradle materials or products, which are recycled into new products at the end of their lives so that ultimately there is no waste.
Cradle-to-cradle focuses on designing industrial systems so that materials flow in closed-loop cycles, which means that waste is minimized and waste products can be recycled and reused.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The book "Solid Waste Engineering - A Global Perspective" is the basis for this course. This textbook is an excellent introduction to the field of Solid Waste Engineering and gives insight into releva
Ce cours donne aux étudiant-e-s les connaissances de base nécessaires pour comprendre les dimensions juridiques de leur activité professionnelle concernant l'aménagement du territoire et la protection
Les systèmes eaux et déchets en Suisse: du traitement end-of-pipe à la fermeture des cycles. Principes de l'adduction, de l'évacuation et du traitement des eaux. Bases du dimensionnement des ouvrages,
Related lectures (10)
Related publications (78)
Related people (10)
, , , , , , , , ,
Related units (5)
Related concepts (16)
Durability is the ability of a physical product to remain functional, without requiring excessive maintenance or repair, when faced with the challenges of normal operation over its design lifetime. There are several measures of durability in use, including years of life, hours of use, and number of operational cycles. In economics, goods with a long usable life are referred to as durable goods. Product durability is predicated by good repairability and regenerability in conjunction with maintenance.
Waste minimisation is a set of processes and practices intended to reduce the amount of waste produced. By reducing or eliminating the generation of harmful and persistent wastes, waste minimisation supports efforts to promote a more sustainable society. Waste minimisation involves redesigning products and processes and/or changing societal patterns of consumption and production. The most environmentally resourceful, economically efficient, and cost effective way to manage waste often is to not have to address the problem in the first place.
Extended producer responsibility (EPR) is a strategy to add all of the estimated environmental costs associated with a product throughout the product life cycle to the market price of that product, contemporarily mainly applied in the field of waste management. Such societal costs are typically externalities to market mechanisms, with a common example being the impact of cars.
In the European Union, building construction accounts for 40% of materials consumption, 40% of overall energy consumption, and 40% of waste production [1]. It is therefore essential to reduce the environmental impact of these structures. Various levers are ...
2023
, , , ,
Optimising the hydration of cementitious materials is crucial to leverage their full potential and avoid wasting resources, embodied energy and CO2. Understanding the fundamental mechanisms is key to reach these objectives. In this paper, we review progres ...
Edible robots and robotic food — edible systems that perceive, process and act upon stimulation — could open a new range of opportunities in health care, environmental management and the promotion of healthier eating habits. For example, they could enable ...