Perceptual control theory (PCT) is a model of behavior based on the properties of negative feedback control loops. A control loop maintains a sensed variable at or near a reference value by means of the effects of its outputs upon that variable, as mediated by physical properties of the environment. In engineering control theory, reference values are set by a user outside the system. An example is a thermostat. In a living organism, reference values for controlled perceptual variables are endogenously maintained. Biological homeostasis and reflexes are simple, low-level examples. The discovery of mathematical principles of control introduced a way to model a negative feedback loop closed through the environment (circular causation), which spawned perceptual control theory. It differs fundamentally from some models in behavioral and cognitive psychology that model stimuli as causes of behavior (linear causation). PCT research is published in experimental psychology, neuroscience, ethology, anthropology, linguistics, sociology, robotics, developmental psychology, organizational psychology and management, and a number of other fields. PCT has been applied to design and administration of educational systems, and has led to a psychotherapy called the method of levels.
The perceptual control theory is deeply rooted in biological cybernetics, systems biology and control theory and the related concept of feedback loops. Unlike some models in behavioral and cognitive psychology it sets out from the concept of circular causality. It shares, therefore, its theoretical foundation with the concept of plant control, but it is distinct from it by emphasizing the control of the internal representation of the physical world.
The plant control theory focuses on neuro-computational processes of movement generation, once a decision for generating the movement has been taken. PCT spotlights the embeddedness of agents in their environment. Therefore, from the perspective of perceptual control, the central problem of motor control consists in finding a sensory input to the system that matches a desired perception.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers some theoretical and practical aspects of robust and adaptive control. This includes H-2 and H-infinity control in model-based and data-driven framework by convex optimization, dire
Provide an introduction to the theory and practice of Model Predictive Control (MPC). Main benefits of MPC: flexible specification of time-domain objectives, performance optimization of highly complex
The course deals with the control of grid connected power electronic converters for renewable applications, covering: converter topologies, pulse width modulation, modelling, control algorithms and co
In cybernetics and control theory, a setpoint (SP; also set point) is the desired or target value for an essential variable, or process value (PV) of a control system, which may differ from the actual measured value of the variable. Departure of such a variable from its setpoint is one basis for error-controlled regulation using negative feedback for automatic control. Cruise control The SP-PV error can be used to return a system to its norm.
The cognitive revolution was an intellectual movement that began in the 1950s as an interdisciplinary study of the mind and its processes. It later became known collectively as cognitive science. The relevant areas of interchange were between the fields of psychology, linguistics, computer science, anthropology, neuroscience, and philosophy. The approaches used were developed within the then-nascent fields of artificial intelligence, computer science, and neuroscience.
A control system manages, commands, directs, or regulates the behavior of other devices or systems using control loops. It can range from a single home heating controller using a thermostat controlling a domestic boiler to large industrial control systems which are used for controlling processes or machines. The control systems are designed via control engineering process. For continuously modulated control, a feedback controller is used to automatically control a process or operation.
Explores the stability of Ordinary Differential Equations, focusing on solution dependence, critical data, linearization, and control of nonlinear systems.
Explains Proportional Integral Control theory and the Final Value Theorem application.
Covers the fundamentals and stability analysis of Networked Control Systems, including software installation, dynamical systems, equilibrium states, and stability testing.
Frequency Response Function (FRF)-based control synthesis methods for Linear Time-Invariant (LTI) systems have been widely used in control theory and industry. Recently, there has been renewed interest in these methods, employing numerical optimization too ...
Sometimes treatment effects are absent in a subgroup of the population. For example, penicillin has no effect on severe symptoms in individuals infected by resistant Staphylococcus aureus, and codeine has no effect on pain in individuals with certain polym ...
Human perceptual development evolves in a stereotyped fashion, with initially limited perceptual capabilities maturing over the months or years following the commencement of sensory experience into robust proficiencies. This review focuses on the functiona ...