Summary
Perceptual control theory (PCT) is a model of behavior based on the properties of negative feedback control loops. A control loop maintains a sensed variable at or near a reference value by means of the effects of its outputs upon that variable, as mediated by physical properties of the environment. In engineering control theory, reference values are set by a user outside the system. An example is a thermostat. In a living organism, reference values for controlled perceptual variables are endogenously maintained. Biological homeostasis and reflexes are simple, low-level examples. The discovery of mathematical principles of control introduced a way to model a negative feedback loop closed through the environment (circular causation), which spawned perceptual control theory. It differs fundamentally from some models in behavioral and cognitive psychology that model stimuli as causes of behavior (linear causation). PCT research is published in experimental psychology, neuroscience, ethology, anthropology, linguistics, sociology, robotics, developmental psychology, organizational psychology and management, and a number of other fields. PCT has been applied to design and administration of educational systems, and has led to a psychotherapy called the method of levels. The perceptual control theory is deeply rooted in biological cybernetics, systems biology and control theory and the related concept of feedback loops. Unlike some models in behavioral and cognitive psychology it sets out from the concept of circular causality. It shares, therefore, its theoretical foundation with the concept of plant control, but it is distinct from it by emphasizing the control of the internal representation of the physical world. The plant control theory focuses on neuro-computational processes of movement generation, once a decision for generating the movement has been taken. PCT spotlights the embeddedness of agents in their environment. Therefore, from the perspective of perceptual control, the central problem of motor control consists in finding a sensory input to the system that matches a desired perception.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
ME-524: Advanced control systems
This course covers some theoretical and practical aspects of robust and adaptive control. This includes H-2 and H-infinity control in model-based and data-driven framework by convex optimization, dire
ME-425: Model predictive control
Provide an introduction to the theory and practice of Model Predictive Control (MPC). Main benefits of MPC: flexible specification of time-domain objectives, performance optimization of highly complex
EE-465: Industrial electronics I
The course deals with the control of grid connected power electronic converters for renewable applications, covering: converter topologies, pulse width modulation, modelling, control algorithms and co
Show more