Concept

Domain (mathematical analysis)

Summary
In mathematical analysis, a domain or region is a non-empty connected open set in a topological space, in particular any non-empty connected open subset of the real coordinate space Rn or the complex coordinate space Cn. A connected open subset of coordinate space is frequently used for the domain of a function, but in general, functions may be defined on sets that are not topological spaces. The basic idea of a connected subset of a space dates from the 19th century, but precise definitions vary slightly from generation to generation, author to author, and edition to edition, as concepts developed and terms were translated between German, French, and English works. In English, some authors use the term domain, some use the term region, some use both terms interchangeably, and some define the two terms slightly differently; some avoid ambiguity by sticking with a phrase such as non-empty connected open subset. One common convention is to define a domain as a connected open set but a region as the union of a domain with none, some, or all of its limit points. A closed region or closed domain is the union of a domain and all of its limit points. Various degrees of smoothness of the boundary of the domain are required for various properties of functions defined on the domain to hold, such as integral theorems (Green's theorem, Stokes theorem), properties of Sobolev spaces, and to define measures on the boundary and spaces of traces (generalized functions defined on the boundary). Commonly considered types of domains are domains with continuous boundary, Lipschitz boundary, C1 boundary, and so forth. A bounded domain or bounded region is that which is a bounded set, i.e., having a finite measure. An exterior domain or external domain is the interior of the complement of a bounded domain. In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane C. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood