In mathematics, a linear equation is an equation that may be put in the form
where are the variables (or unknowns), and are the coefficients, which are often real numbers. The coefficients may be considered as parameters of the equation, and may be arbitrary expressions, provided they do not contain any of the variables. To yield a meaningful equation, the coefficients are required to not all be zero.
Alternatively, a linear equation can be obtained by equating to zero a linear polynomial over some field, from which the coefficients are taken.
The solutions of such an equation are the values that, when substituted for the unknowns, make the equality true.
In the case of just one variable, there is exactly one solution (provided that ). Often, the term linear equation refers implicitly to this particular case, in which the variable is sensibly called the unknown.
In the case of two variables, each solution may be interpreted as the Cartesian coordinates of a point of the Euclidean plane. The solutions of a linear equation form a line in the Euclidean plane, and, conversely, every line can be viewed as the set of all solutions of a linear equation in two variables. This is the origin of the term linear for describing this type of equations. More generally, the solutions of a linear equation in n variables form a hyperplane (a subspace of dimension n − 1) in the Euclidean space of dimension n.
Linear equations occur frequently in all mathematics and their applications in physics and engineering, partly because non-linear systems are often well approximated by linear equations.
This article considers the case of a single equation with coefficients from the field of real numbers, for which one studies the real solutions. All of its content applies to complex solutions and, more generally, for linear equations with coefficients and solutions in any field. For the case of several simultaneous linear equations, see system of linear equations.
A linear equation in one variable x can be written as with .
The solution is .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Four
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them.
Linear algebra is the branch of mathematics concerning linear equations such as: linear maps such as: and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions.
In mathematics, a system of linear equations (or linear system) is a collection of one or more linear equations involving the same variables. For example, is a system of three equations in the three variables x, y, z. A solution to a linear system is an assignment of values to the variables such that all the equations are simultaneously satisfied. A solution to the system above is given by the ordered triple since it makes all three equations valid. The word "system" indicates that the equations should be considered collectively, rather than individually.
The Super-X Divertor (SXD) is an alternative divertor configuration leveraging total flux expansion at the Outer Strike Point (OSP). While the extended 2-Point Model (2PM) predicts facilitated detachment access and control in the SXD configuration, these a ...
2024
We prove global in time well-posedness for perturbations of the 2D stochastic Navier-Stokes equations partial derivative( t)u + u center dot del u = Delta u - del p + sigma + xi, u(0, center dot ) = u(0),div (u) = 0, driven by additive space-time white noi ...
London2024
Pyroelectricity in a recently developed all-organic composite electret with a polar polynorbornene-based filler and polydimethylsiloxane (PDMS) matrix has been studied with the help of thermal and dielectric techniques. Measurement of the pyroelectric p co ...