Summary
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where , a linear map is called a linear endomorphism. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that and are real vector spaces (not necessarily with ), or it can be used to emphasize that is a function space, which is a common convention in functional analysis. Sometimes the term linear function has the same meaning as linear map, while in analysis it does not. A linear map from V to W always maps the origin of V to the origin of W. Moreover, it maps linear subspaces in V onto linear subspaces in W (possibly of a lower dimension); for example, it maps a plane through the origin in V to either a plane through the origin in W, a line through the origin in W, or just the origin in W. Linear maps can often be represented as matrices, and simple examples include rotation and reflection linear transformations. In the language of , linear maps are the morphisms of vector spaces. Let and be vector spaces over the same field . A function is said to be a linear map if for any two vectors and any scalar the following two conditions are satisfied: Additivity / operation of addition Homogeneity of degree 1 / operation of scalar multiplication Thus, a linear map is said to be operation preserving. In other words, it does not matter whether the linear map is applied before (the right hand sides of the above examples) or after (the left hand sides of the examples) the operations of addition and scalar multiplication.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (53)
MATH-404: Functional analysis II
We introduce locally convex vector spaces. As an example we treat the space of test functions and the space of distributions. In the second part of the course, we discuss differential calculus in Bana
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
MATH-305: Introduction to partial differential equations
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
Show more