En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité. Ces courbes apparaissent aussi comme les courbes planes définies par une équation de degré 2, dit autrement les lignes de niveau de fonctions quadratiques. En dehors du cercle, chaque conique non dégénérée admet un axe de symétrie principal, sur lequel un point appelé foyer permet d’identifier la courbe comme le lieu géométrique des points satisfaisant une équation monofocale. L’ellipse et l’hyperbole admettent aussi un axe de symétrie secondaire perpendiculaire à l’axe principal, définissant ainsi un deuxième foyer et permettant de redéfinir la conique par une équation bifocale. Les intersections de cône par un plan pouvant être vues comme des projections coniques d'un cercle sur un plan, l'étude des coniques en géométrie projective permet d'obtenir des résultats puissants et donne lieu à l'étude des coniques projectives. Les coniques sont d'un intérêt particulier en astronautique et en mécanique céleste car elles décrivent la forme des orbites d'un système à deux corps sous l'effet de la gravitation. On obtient une conique en prenant l'intersection d'un plan avec un cône dont la courbe directrice est un cercle. On peut, dans l'étude, se limiter à l'intersection d'un plan avec un cône de révolution. Selon les positions relatives du plan de coupe et du cône de révolution, on obtient différents types de coniques : Des coniques propres, quand le plan de coupe ne passe pas par le sommet du cône.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
MATH-126: Geometry for architects II
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
ME-373: Finite element modelling and simulation
L'objectif de ce cours est d'apprendre à réaliser de manière rigoureuse et critique des analyses par éléments finis de problèmes concrets en mécanique des solides à l'aide d'un logiciel CAE moderne.
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
Afficher plus
Publications associées (32)
Concepts associés (32)
Foyer (mathématiques)
On désigne généralement par foyer un ou plusieurs points caractéristiques associés à une figure remarquable de géométrie. La définition monofocale d'une conique utilise conjointement un foyer F et une droite D appelée directrice associée. La conique apparaît comme ensemble des points M du plan tels que . Selon la valeur du réel strictement positif e qu'on nomme excentricité, l'ensemble sera une ellipse, une parabole ou une hyperbole. Les points de la parabole sont donc caractérisés par la propriété MF=MH sur le schéma ci-contre, H désignant le projeté orthogonal de M sur D.
Excentricité (mathématiques)
En géométrie euclidienne, l'excentricité est un paramètre caractéristique d'une courbe conique. C'est un nombre réel positif, souvent noté e. Les coniques apparaissent notamment en mécanique newtonienne avec la trajectoire d’un corps ponctuel dans un champ gravitationnel radial. C’est donc, en première approximation, la forme des trajectoires des planètes autour du soleil, de leurs satellites et des comètes. Lorsqu’un corps a une trajectoire elliptique autour du soleil, ce dernier ne se trouve pas au centre de l’ellipse mais en l’un de ses foyers.
Cross section (geometry)
In geometry and science, a cross section is the non-empty intersection of a solid body in three-dimensional space with a plane, or the analog in higher-dimensional spaces. Cutting an object into slices creates many parallel cross-sections. The boundary of a cross-section in three-dimensional space that is parallel to two of the axes, that is, parallel to the plane determined by these axes, is sometimes referred to as a contour line; for example, if a plane cuts through mountains of a raised-relief map parallel to the ground, the result is a contour line in two-dimensional space showing points on the surface of the mountains of equal elevation.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.