In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion.
The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
The set of real numbers is denoted R or and is sometimes called "the reals".
The adjective real, used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of −1.
The real numbers include the rational numbers, such as the integer −5 and the fraction 4/3. The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) are the root of a polynomial with integer coefficients, such as the square root = 1.414...; these are called algebraic numbers. There are also real numbers which are not, such as pi = 3.1415...; these are called transcendental numbers.
Real numbers can be thought of as all points on a line called the number line or real line, where the points corresponding to integers (..., −2, −1, 0, 1, 2, ...) are equally spaced.
Conversely, analytic geometry is the association of points on lines (especially axis lines) to real numbers such that geometric displacements are proportional to differences between corresponding numbers.
The informal descriptions above of the real numbers are not sufficient for ensuring the correctness of proofs of theorems involving real numbers. The realization that a better definition was needed, and the elaboration of such a definition was a major development of 19th-century mathematics and is the foundation of real analysis, the study of real functions and real-valued sequences. A current axiomatic definition is that real numbers form the unique (up to an isomorphism) Dedekind-complete ordered field.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality is always true in elementary algebra. For example, in elementary arithmetic, one has Therefore, one would say that multiplication distributes over addition. This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers, polynomials, matrices, rings, and fields.
In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. A real closed field is a field F in which any of the following equivalent conditions is true: F is elementarily equivalent to the real numbers. In other words, it has the same first-order properties as the reals: any sentence in the first-order language of fields is true in F if and only if it is true in the reals.
In mathematics, Richardson's theorem establishes the undecidability of the equality of real numbers defined by expressions involving integers, pi, and exponential and sine functions. It was proved in 1968 by mathematician and computer scientist Daniel Richardson of the University of Bath. Specifically, the class of expressions for which the theorem holds is that generated by rational numbers, the number π, the number ln 2, the variable x, the operations of addition, subtraction, multiplication, composition, and the sin, exp, and abs functions.
We consider the problem of comparing several samples of stochastic processes with respect to their second-order structure, and describing the main modes of variation in this second order structure, if present. These tasks can be seen as an Analysis of Vari ...
Covers real numbers, complex numbers, numerical sequences, series, real functions, function limits, derivatives, Taylor series, integrals, and growth rates of functions.
Full wavefront control by photonic components requires that the spatial phase modulation on an incoming optical beam ranges from 0 to 2 pi. Because of their radiative coupling to the environment, all optical components are intrinsically non-Hermitian syste ...
This paper considers the problem of distributed lossy compression where the goal is to recover one or more linear combinations of the sources at the decoder, subject to distortion constraints. For certain configurations, it is known that codes with algebra ...