Nanolithography (NL) is a growing field of techniques within nanotechnology dealing with the engineering (patterning e.g. etching, depositing, writing, printing etc) of nanometer-scale structures on various materials.
The modern term reflects on a design of structures built in range of 10−9 to 10−6 meters, i.e. nanometer scale. Essentially, the field is a derivative of lithography, only covering very small structures. All NL methods can be categorized into four groups: photo lithography, scanning lithography, soft lithography and other miscellaneous techniques.
The NL has evolved from the need to increase the number of sub-micrometer features (e.g. transistors, capacitors etc.) in an integrated circuit in order to keep up with Moore's Law. While lithographic techniques have been around since the late 18th century, none were applied to nanoscale structures until the mid-1950s. With evolution of the semiconductor industry, demand for techniques capable of producing micro- and nano-scale structures skyrocketed. Photolithography was applied to these structures for the first time in 1958 beginning the age of nanolithography.
Since then, photolithography has become the most commercially successful technique, capable of producing sub-100 nm patterns. There are several techniques associated with the field, each designed to serve its many uses in the medical and semiconductor industries. Breakthroughs in this field contribute significantly to the advancement of nanotechnology, and are increasingly important today as demand for smaller and smaller computer chips increases. Further areas of research deal with physical limitations of the field, energy harvesting, and photonics.
From Greek, the word nanolithography can be broken up into three parts: "nano" meaning dwarf, "lith" meaning stone, and "graphy" meaning to write, or "tiny writing onto stone."
Photolithography
As of 2021 photolithography is the most heavily used technique in mass production of microelectronics and semiconductor devices.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course concerns modern bioanalytical techniques to investigate biomolecules both in vitro and in vivo, including recent methods to image, track and manipulate single molecules. We cover the basic
This course gives the basics for understanding nanotechnology from an engineer's perspective: physical background, materials aspects and scaling laws, fabrication and imaging of nanoscale devices.
Nanofabrication with focused charged particle beams (SEM, FIB) and their applications such as lithography, gas assisted deposition / etching, and milling are discussed and the limitations of these pro
Dip pen nanolithography (DPN) is a scanning probe lithography technique where an atomic force microscope (AFM) tip is used to create patterns directly on a range of substances with a variety of inks. A common example of this technique is exemplified by the use of alkane thiolates to imprint onto a gold surface. This technique allows surface patterning on scales of under 100 nanometers.
Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. SPM was founded in 1981, with the invention of the scanning tunneling microscope, an instrument for imaging surfaces at the atomic level. The first successful scanning tunneling microscope experiment was done by Gerd Binnig and Heinrich Rohrer. The key to their success was using a feedback loop to regulate gap distance between the sample and the probe.
Scanning probe lithography (SPL) describes a set of nanolithographic methods to pattern material on the nanoscale using scanning probes. It is a direct-write, mask-less approach which bypasses the diffraction limit and can reach resolutions below 10 nm. It is considered an alternative lithographic technology often used in academic and research environments. The term scanning probe lithography was coined after the first patterning experiments with scanning probe microscopes (SPM) in the late 1980s.
Controlled atomic patterning is an attractive tool to fine tune properties of graphitic lattice. Several O-functionalized derivatives of graphitic lattice have been widely studied, e.g., graphene oxide, reduced graphene oxide, and functionalized carbon nan ...
Oxford2024
, ,
Surface functionalization of 1D materials such as silicon nanowires is a critical preparation technology for biochemical sensing. However, existing nonselective functionalization techniques result in nonlocal binding and contamination, with potential devic ...
Amer Chemical Soc2024
Selective area epitaxy (SAE), applied to semiconductor growth, allows tailored fabrication of intricate structures at the nanoscale with enhanced properties and functionalities. In the field of nanowires (NWs), it adds scalability by enabling the fabricati ...