Real-time locating systems (RTLS), also known as real-time tracking systems, are used to automatically identify and track the location of objects or people in real time, usually within a building or other contained area. Wireless RTLS tags are attached to objects or worn by people, and in most RTLS, fixed reference points receive wireless signals from tags to determine their location. Examples of real-time locating systems include tracking automobiles through an assembly line, locating pallets of merchandise in a warehouse, or finding medical equipment in a hospital.
The physical layer of RTLS technology is often radio frequency (RF) communication. Some systems use optical (usually infrared) or acoustic (usually ultrasound) technology with, or in place of RF, RTLS tags. And fixed reference points can be transmitters, receivers, or both resulting in numerous possible technology combinations.
RTLS are a form of local positioning system and do not usually refer to GPS or to mobile phone tracking. Location information usually does not include speed, direction, or spatial orientation.
The term RTLS was created (circa 1998) at the ID EXPO trade show by Tim Harrington (WhereNet), Jay Werb (PinPoint), and Bert Moore (Automatic Identification Manufacturers, Inc., AIM). It was created to describe and differentiate an emerging technology that not only provided the automatic identification capabilities of active RFID tags, but also added the ability to view the location on a computer screen. It was at this show that the first examples of a commercial radio based RTLS system were shown by PinPoint and WhereNet. Although this capability had been utilized previously by military and government agencies, the technology had been too expensive for commercial purposes. In the early 1990s, the first commercial RTLS were installed at three healthcare facilities in the United States and were based on the transmission and decoding of infrared light signals from actively transmitting tags.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An indoor positioning system (IPS) is a network of devices used to locate people or objects where GPS and other satellite technologies lack precision or fail entirely, such as inside multistory buildings, airports, alleys, parking garages, and underground locations. A large variety of techniques and devices are used to provide indoor positioning ranging from reconfigured devices already deployed such as smartphones, WiFi and Bluetooth antennas, digital cameras, and clocks; to purpose built installations with relays and beacons strategically placed throughout a defined space.
A vehicle tracking system combines the use of automatic vehicle location in individual vehicles with software that collects these fleet data for a comprehensive picture of vehicle locations. Modern vehicle tracking systems commonly use GPS or GLONASS technology for locating the vehicle, but other types of automatic vehicle location technology can also be used. Vehicle information can be viewed on electronic maps via the Internet or specialized software.
A tracking system, also known as a locating system, is used for the observing of persons or objects on the move and supplying a timely ordered sequence of location data for further processing. A myriad of tracking systems exists. Some are 'lag time' indicators, that is, the data is collected after an item has passed a point for example a bar code or choke point or gate. Others are 'real-time' or 'near real-time' like Global Positioning Systems (GPS) depending on how often the data is refreshed.
This doctoral thesis navigates the complex landscape of motion coordination and formation control within teams of rotary-wing Micro Aerial Vehicles (MAVs). Prompted by the intricate demands of real-world applications such as search and rescue or surveillan ...
With the prevalence of smartphones, watches, and Internet of Things (IoT) devices, the abilityto track their positions is becoming increasingly important. For many indoor positioningsystems (IPSs), providing an uninterrupted flow of information in real-tim ...
EPFL2023
, , , , ,
For people with limited mobility, navigating in cluttered indoor environment is challenging. In this work, we propose a mobile assistive furniture suite that is designed to ease the life of people with special needs in indoor movement. To enable intelligen ...