The Poincaré group, named after Henri Poincaré (1906), was first defined by Hermann Minkowski (1908) as the group of Minkowski spacetime isometries. It is a ten-dimensional non-abelian Lie group that is of importance as a model in our understanding of the most basic fundamentals of physics.
A Minkowski spacetime isometry has the property that the interval between events is left invariant. For example, if everything were postponed by two hours, including the two events and the path you took to go from one to the other, then the time interval between the events recorded by a stop-watch you carried with you would be the same. Or if everything were shifted five kilometres to the west, or turned 60 degrees to the right, you would also see no change in the interval. It turns out that the proper length of an object is also unaffected by such a shift. A time or space reversal (a reflection) is also an isometry of this group.
In Minkowski space (i.e. ignoring the effects of gravity), there are ten degrees of freedom of the isometries, which may be thought of as translation through time or space (four degrees, one per dimension); reflection through a plane (three degrees, the freedom in orientation of this plane); or a "boost" in any of the three spatial directions (three degrees). Composition of transformations is the operation of the Poincaré group, with proper rotations being produced as the composition of an even number of reflections.
In classical physics, the Galilean group is a comparable ten-parameter group that acts on absolute time and space. Instead of boosts, it features shear mappings to relate co-moving frames of reference.
Poincaré symmetry is the full symmetry of special relativity. It includes:
translations (displacements) in time and space (P), forming the abelian Lie group of translations on space-time;
rotations in space, forming the non-abelian Lie group of three-dimensional rotations (J);
boosts, transformations connecting two uniformly moving bodies (K).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and T that is observed to be an exact symmetry of nature at the fundamental level. The CPT theorem says that CPT symmetry holds for all physical phenomena, or more precisely, that any Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have CPT symmetry.
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry: The kinematical laws of special relativity Maxwell's field equations in the theory of electromagnetism The Dirac equation in the theory of the electron The Standard Model of particle physics The Lorentz group expresses the fundamental symmetry of space and time of all known fundamental laws of nature.
In mathematical physics, Minkowski space (or Minkowski spacetime) (mɪŋˈkɔːfski,_-ˈkɒf-) combines inertial space and time manifolds (x,y) with a non-inertial reference frame of space and time (x',t') into a four-dimensional model relating a position (inertial frame of reference) to the field (physics). A four-vector (x,y,z,t) consists of a coordinate axes such as a Euclidean space plus time. This may be used with the non-inertial frame to illustrate specifics of motion, but should not be confused with the spacetime model generally.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
Presentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...).Proofs of
An important feature of turbulent boundary layers are persistent large-scale coherent structures in the flow. Here, we use Dynamic Mode Decomposition (DMD), a data-driven technique designed to detect spatio-temporal coherence, to construct optimal low-dime ...
Recently, SU(3) chains in the symmetric and self-conjugate representations have been studied using field theory techniques. For certain representations, namely rank-psymmetric ones with pnot a multiple of 3, it was argued that the ground state exhibits gap ...
We explore consequences of the Averaged Null Energy Condition (ANEC) for scaling dimensions Delta of operators in four-dimensional N = 1 superconformal field theories. We show that in many cases the ANEC bounds are stronger than the corresponding unitarity ...